-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathRun.py
47 lines (39 loc) · 1.33 KB
/
Run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import cv2
import numpy as np
thres = 0.45 # Threshold to detect object
nms_threshold = 0.2
cap = cv2.VideoCapture(0)
# cap.set(3,1280)
# cap.set(4,720)
# cap.set(10,150)
classNames= []
classFile = 'coco.names'
with open(classFile,'rt') as f:
classNames = f.read().rstrip('\n').split('\n')
print(classNames)
configPath = 'ssd_mobilenet_v3_large_coco_2020_01_14.pbtxt'
weightsPath = 'frozen_inference_graph.pb'
net = cv2.dnn_DetectionModel(weightsPath,configPath)
net.setInputSize(320,320)
net.setInputScale(1.0/ 127.5)
net.setInputMean((127.5, 127.5, 127.5))
net.setInputSwapRB(True)
while True:
success,img = cap.read()
classIds, confs, bbox = net.detect(img,confThreshold=thres)
bbox = list(bbox)
confs = list(np.array(confs).reshape(1,-1)[0])
confs = list(map(float,confs))
#print(type(confs[0]))
#print(confs)
indices = cv2.dnn.NMSBoxes(bbox,confs,thres,nms_threshold)
print(indices)
for i in indices:
i = i[0]
box = bbox[i]
x,y,w,h = box[0],box[1],box[2],box[3]
cv2.rectangle(img, (x,y),(x+w,h+y), color=(0, 255, 0), thickness=2)
cv2.putText(img,classNames[classIds[i][0]-1].upper(),(box[0]+10,box[1]+30),
cv2.FONT_HERSHEY_COMPLEX,1,(0,255,0),2)
cv2.imshow("Output",img)
cv2.waitKey(1)