forked from open-mmlab/mmsegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbeit.yml
45 lines (45 loc) · 1.39 KB
/
beit.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
Models:
- Name: upernet_beit-base_8x2_640x640_160k_ade20k
In Collection: UPerNet
Metadata:
backbone: BEiT-B
crop size: (640,640)
lr schd: 160000
inference time (ms/im):
- value: 500.0
hardware: V100
backend: PyTorch
batch size: 1
mode: FP32
resolution: (640,640)
Training Memory (GB): 15.88
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 53.08
mIoU(ms+flip): 53.84
Config: configs/beit/upernet_beit-base_8x2_640x640_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/beit/upernet_beit-base_8x2_640x640_160k_ade20k/upernet_beit-base_8x2_640x640_160k_ade20k-eead221d.pth
- Name: upernet_beit-large_fp16_8x1_640x640_160k_ade20k
In Collection: UPerNet
Metadata:
backbone: BEiT-L
crop size: (640,640)
lr schd: 320000
inference time (ms/im):
- value: 1041.67
hardware: V100
backend: PyTorch
batch size: 1
mode: FP16
resolution: (640,640)
Training Memory (GB): 22.64
Results:
- Task: Semantic Segmentation
Dataset: ADE20K
Metrics:
mIoU: 56.33
mIoU(ms+flip): 56.84
Config: configs/beit/upernet_beit-large_fp16_8x1_640x640_160k_ade20k.py
Weights: https://download.openmmlab.com/mmsegmentation/v0.5/beit/upernet_beit-large_fp16_8x1_640x640_160k_ade20k/upernet_beit-large_fp16_8x1_640x640_160k_ade20k-8fc0dd5d.pth