-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprompt_ensemble.py
341 lines (305 loc) · 14.5 KB
/
prompt_ensemble.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
import os
from typing import Union, List
from pkg_resources import packaging
import torch
import numpy as np
def encode_text_with_prompt_ensemble(model, objs, tokenizer, device):
texture_list = ['carpet', 'leather','grid',
'tile', 'wood']
class_mapping = {"macaroni1":"macaroni",
"macaroni2":"macaroni",
#"pcb1":"pcb",#"printed circuit board",
#"pcb2":"pcb",#"printed circuit board",
#"pcb3":"pcb",#"printed circuit board",
#"pcb4":"pcb",#"printed circuit board",
#"pipe_fryum":"pipe fryum",
}
# two_class = [
# '{}.',
# '{}.',
# ]
prompt_normal = [
'flawless {}',
'perfect {}',
'unblemished {}',
'{} without flaw',
'{} without defect',
'{} without damaged'
]
prompt_abnormal = [
'damaged {}',
'broken {}',
'{} with flaw',
'{} with defect',
'{} with distortion',
'{} with broken parts',
]
prompt_state = [prompt_normal, prompt_abnormal]
prompt_templates = [
'a photo of a {}.',
'a photo of the {}.',
'a photo of a rotated {}.',
'a photo of the rotated {}.',
'a rotated photo of a {}.',
'a rotated photo of the {}.',
'a flipped photo of a {}.',
'a flipped photo of the {}.',
'a cropped photo of a {}.',
'a cropped photo of the {}.',
'a close-up photo of a {}.',
'a close-up photo of the {}.',
'a bad photo of a {}.',
'a low resolution photo of the {}.',
'a bad photo of the {}.',
'a bright photo of a {}.',
'a dark photo of the {}.',
'a photo of my {}.',
'a black and white photo of the {}.',
'a bright photo of the {}.',
'a jpeg corrupted photo of a {}.',
'a blurry photo of the {}.',
'a photo of the {}.',
'a good photo of the {}.',
'a photo of one {}.',
# 'a photo of a {}.',
# 'a blurry photo of a {}.',
# 'a jpeg corrupted photo of the {}.',
# 'a good photo of a {}.',
'a black and white photo of a {}.',
'a dark photo of a {}.',
'a photo of a cool {}.',
'a photo of the cool {}.',
'a photo of a small {}.',
'a photo of the small {}.',
'a photo of a big {}.',
'a photo of the big {}.',
'there is a {} in the scene.',
'there is the {} in the scene.',
'this is a {} in the scene.',
'this is the {} in the scene.',
'this is one {} in the scene.'
]
normal_text_prompts = []
abnormal_text_prompts = []
for obj in objs:
# if obj in texture_list:
# prompt_templates = prompt_templates + text_temp
# else:
# prompt_templates = prompt_templates + img_temp
# normal
# prompted_state = [state.format(obj) for state in prompt_state[0]]
if obj in class_mapping:
prompted_state = [state.format(class_mapping[obj]) for state in prompt_state[0]]
else:
prompted_state = [state.format(obj) for state in prompt_state[0]]
prompted_sentence = []
for s in prompted_state:
for template in prompt_templates:
prompted_sentence.append(template.format(s))
# prompted_sentence.append(two_class[0].format(obj))
# print(len(prompted_sentence))
prompted_sentence = tokenizer(prompted_sentence).to(device)
class_embeddings = model.encode_text(prompted_sentence)
class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True)
class_embedding = class_embeddings.mean(dim=0)
class_embedding /= class_embedding.norm()
normal_text_prompts.append(class_embedding)
# abnormal
prompted_state = [state.format(obj) for state in prompt_state[1]]
if obj in class_mapping:
prompted_state = [state.format(class_mapping[obj]) for state in prompt_state[1]]
else:
prompted_state = [state.format(obj) for state in prompt_state[1]]
prompted_sentence = []
for s in prompted_state:
for template in prompt_templates:
prompted_sentence.append(template.format(s))
# prompted_sentence.append(two_class[1].format(obj))
# print(len(prompted_sentence))
prompted_sentence = tokenizer(prompted_sentence).to(device)
class_embeddings = model.encode_text(prompted_sentence)
class_embeddings /= class_embeddings.norm(dim=-1, keepdim=True)
class_embedding = class_embeddings.mean(dim=0)
class_embedding /= class_embedding.norm()
abnormal_text_prompts.append(class_embedding)
normal_text_prompts = torch.stack(normal_text_prompts, dim=1).to(device)
abnormal_text_prompts = torch.stack(abnormal_text_prompts, dim=1).to(device)
normal_text_prompts = normal_text_prompts.reshape(normal_text_prompts.shape[1], normal_text_prompts.shape[0])
abnormal_text_prompts = abnormal_text_prompts.reshape(abnormal_text_prompts.shape[1], abnormal_text_prompts.shape[0])
# print(normal_text_prompts.shape, abnormal_text_prompts.shape)
print("prompt_templates:{} | prompt_normal:{} | prompt_abnormal:{}".format(len(prompt_templates), len(prompt_normal), len(prompt_abnormal)))
return normal_text_prompts, abnormal_text_prompts
###################### AnoVL #######################
# https://github.com/hq-deng/AnoVL/blob/main/prompt_ensemble.py
# state_normal = [#"{}",
# #"undamaged {}",
# "normal {}",
# "flawless {}",
# "perfect {}",
# "unblemished {}",
# "{} without flaw",
# "{} without defect",
# "{} without damage",
# ]
# state_anomaly = ["damaged {}",
# #"flawed {}",
# "abnormal {}",
# "imperfect {}",
# "blemished {}",
# "{} with flaw",
# "{} with defect",
# "{} with damage"]
templates = ["a cropped photo of the {}",
"a cropped photo of a {}",
"a close-up photo of a {}",
"a close-up photo of the {}",
"a bright photo of a {}",
"a bright photo of the {}",
"a dark photo of the {}",
"a dark photo of a {}",
"a jpeg corrupted photo of a {}",
"a jpeg corrupted photo of the {}",
"a blurry photo of the {}",
"a blurry photo of a {}",
"a photo of a {}",
"a photo of the {}",
"a photo of a small {}",
"a photo of the small {}",
"a photo of a large {}",
"a photo of the large {}",
"a photo of the {} for visual inspection",
"a photo of a {} for visual inspection",
"a photo of the {} for anomaly detection",
"a photo of a {} for anomaly detection",]
inds_temp = ["a cropped industrial photo of the {}",
"a cropped industrial photo of a {}",
"a close-up industrial photo of a {}",
"a close-up industrial photo of the {}",
"a bright industrial photo of a {}",
"a bright industrial photo of the {}",
"a dark industrial photo of the {}",
"a dark industrial photo of a {}",
"a jpeg corrupted industrial photo of a {}",
"a jpeg corrupted industrial photo of the {}",
"a blurry industrial photo of the {}",
"a blurry industrial photo of a {}",
"an industrial photo of a {}",
"an industrial photo of the {}",
"an industrial photo of a small {}",
"an industrial photo of the small {}",
"an industrial photo of a large {}",
"an industrial photo of the large {}",
"an industrial photo of the {} for visual inspection",
"an industrial photo of a {} for visual inspection",
"an industrial photo of the {} for anomaly detection",
"an industrial photo of a {} for anomaly detection",]
img_temp = ["a cropped industrial image of the {}",
"a cropped industrial image of a {}",
"a close-up industrial image of a {}",
"a close-up industrial image of the {}",
"a bright industrial image of a {}",
"a bright industrial image of the {}",
"a dark industrial image of the {}",
"a dark industrial image of a {}",
"a jpeg corrupted industrial image of a {}",
"a jpeg corrupted industrial image of the {}",
"a blurry industrial image of the {}",
"a blurry industrial image of a {}",
"an industrial image of a {}",
"an industrial image of the {}",
"an industrial image of a small {}",
"an industrial image of the small {}",
"an industrial image of a large {}",
"an industrial image of the large {}",
"an industrial image of the {} for visual inspection",
"an industrial image of a {} for visual inspection",
"an industrial image of the {} for anomaly detection",
"an industrial image of a {} for anomaly detection",]
mnf_temp = ["a cropped manufacturing image of the {}",
"a cropped manufacturing image of a {}",
"a close-up manufacturing image of a {}",
"a close-up manufacturing image of the {}",
"a bright manufacturing image of a {}",
"a bright manufacturing image of the {}",
"a dark manufacturing image of the {}",
"a dark manufacturing image of a {}",
"a jpeg corrupted manufacturing image of a {}",
"a jpeg corrupted manufacturing image of the {}",
"a blurry manufacturing image of the {}",
"a blurry manufacturing image of a {}",
"a manufacturing image of a {}",
"a manufacturing image of the {}",
"a manufacturing image of a small {}",
"a manufacturing image of the small {}",
"a manufacturing image of a large {}",
"a manufacturing image of the large {}",
"a manufacturing image of the {} for visual inspection",
"a manufacturing image of a {} for visual inspection",
"a manufacturing image of the {} for anomaly detection",
"a manufacturing image of a {} for anomaly detection",]
text_temp = ["a cropped textural photo of the {}",
"a cropped textural photo of a {}",
"a close-up textural photo of a {}",
"a close-up textural photo of the {}",
"a bright textural photo of a {}",
"a bright textural photo of the {}",
"a dark textural photo of the {}",
"a dark textural photo of a {}",
"a jpeg corrupted textural photo of a {}",
"a jpeg corrupted textural photo of the {}",
"a blurry textural photo of the {}",
"a blurry textural photo of a {}",
"a textural photo of a {}",
"a textural photo of the {}",
"a textural photo of a small {}",
"a textural photo of the small {}",
"a textural photo of a large {}",
"a textural photo of the large {}",
"a textural photo of the {} for visual inspection",
"a textural photo of a {} for visual inspection",
"a textural photo of the {} for anomaly detection",
"a textural photo of a {} for anomaly detection",]
surf_temp = ["a cropped surface photo of the {}",
"a cropped surface photo of a {}",
"a close-up surface photo of a {}",
"a close-up surface photo of the {}",
"a bright surface photo of a {}",
"a bright surface photo of the {}",
"a dark surface photo of the {}",
"a dark surface photo of a {}",
"a jpeg corrupted surface photo of a {}",
"a jpeg corrupted surface photo of the {}",
"a blurry surface photo of the {}",
"a blurry surface photo of a {}",
"a surface photo of a {}",
"a surface photo of the {}",
"a surface photo of a small {}",
"a surface photo of the small {}",
"a surface photo of a large {}",
"a surface photo of the large {}",
"a surface photo of the {} for visual inspection",
"a surface photo of a {} for visual inspection",
"a surface photo of the {} for anomaly detection",
"a surface photo of a {} for anomaly detection",]
surf_temp = ["a cropped surface picture of the {}",
"a cropped surface picture of a {}",
"a close-up surface picture of a {}",
"a close-up surface picture of the {}",
"a bright surface picture of a {}",
"a bright surface picture of the {}",
"a dark surface picture of the {}",
"a dark surface picture of a {}",
"a jpeg corrupted surface picture of a {}",
"a jpeg corrupted surface picture of the {}",
"a blurry surface picture of the {}",
"a blurry surface picture of a {}",
"a surface picture of a {}",
"a surface picture of the {}",
"a surface picture of a small {}",
"a surface picture of the small {}",
"a surface picture of a large {}",
"a surface picture of the large {}",
"a surface picture of the {} for visual inspection",
"a surface picture of a {} for visual inspection",
"a surface picture of the {} for anomaly detection",
"a surface picture of a {} for anomaly detection",]