diff --git a/FLT/ForMathlib/ActionTopology.lean b/FLT/ForMathlib/ActionTopology.lean index 9acedbfb..2f0d8789 100644 --- a/FLT/ForMathlib/ActionTopology.lean +++ b/FLT/ForMathlib/ActionTopology.lean @@ -208,7 +208,7 @@ theorem iso (e : A ≃L[R] B) : IsActionTopology R B where let g' : B →[R] A := e.symm.toMulActionHom let h : A →+ B := e let h' : B →+ A := e.symm - simp_rw [e.toHomeomorph.symm.inducing.1, isActionTopology R A, actionTopology, induced_sInf] + simp_rw [e.toHomeomorph.symm.isInducing.1, isActionTopology R A, actionTopology, induced_sInf] congr 1 ext τ rw [Set.mem_image] @@ -302,7 +302,7 @@ theorem coinduced_of_surjective {φ : A →ₗ[R] B} (hφ : Function.Surjective rw [AddMonoidHom.coe_prodMap, Prod.map_surjective] exact ⟨Function.surjective_id, by simp_all⟩ · -- should `apply continuousprodmap ctrl-space` find `Continuous.prod_map`? - apply @Continuous.prod_map _ _ _ _ (_) (_) (_) (_) id φ continuous_id + apply @Continuous.prodMap _ _ _ _ (_) (_) (_) (_) id φ continuous_id rw [continuous_iff_coinduced_le, isActionTopology R A] · rw [← isActionTopology R A] exact coinduced_prod_eq_prod_coinduced (AddMonoidHom.id R) φ.toAddMonoidHom @@ -320,7 +320,7 @@ theorem coinduced_of_surjective {φ : A →ₗ[R] B} (hφ : Function.Surjective convert isOpenMap_of_coinduced (AddMonoidHom.prodMap φ.toAddMonoidHom φ.toAddMonoidHom) (_) (_) (_) bar · aesop - · apply @Continuous.prod_map _ _ _ _ (_) (_) (_) (_) <;> + · apply @Continuous.prodMap _ _ _ _ (_) (_) (_) (_) <;> · rw [continuous_iff_coinduced_le, isActionTopology R A]; rfl · rw [← isActionTopology R A] exact coinduced_prod_eq_prod_coinduced φ φ hφ hφ