diff --git a/FLT/AutomorphicForm/QuaternionAlgebra.lean b/FLT/AutomorphicForm/QuaternionAlgebra.lean index 6c00caf3..f9186213 100644 --- a/FLT/AutomorphicForm/QuaternionAlgebra.lean +++ b/FLT/AutomorphicForm/QuaternionAlgebra.lean @@ -33,7 +33,7 @@ noncomputable abbrev incl₁ : Dˣ →* Dfx F D := Units.map Algebra.TensorProduct.includeLeftRingHom.toMonoidHom noncomputable abbrev incl₂ : (FiniteAdeleRing (𝓞 F) F)ˣ →* Dfx F D := - Units.map Algebra.TensorProduct.rightAlgebra'.toMonoidHom + Units.map Algebra.TensorProduct.rightAlgebra.toMonoidHom /-! This definition is made in mathlib-generality but is *not* the definition of an automorphic diff --git a/FLT/DivisionAlgebra/Finiteness.lean b/FLT/DivisionAlgebra/Finiteness.lean index f2fe9a8e..1747e379 100644 --- a/FLT/DivisionAlgebra/Finiteness.lean +++ b/FLT/DivisionAlgebra/Finiteness.lean @@ -33,24 +33,8 @@ section missing_instances variable {R D A : Type*} [CommSemiring R] [Semiring D] [CommSemiring A] [Algebra R D] [Algebra R A] --- Algebra.TensorProduct.rightAlgebra has unnecessary commutativity assumptions --- This should be fixed in mathlib; ideally it should be an exact mirror of leftAlgebra but --- I ignore S as I don't need it. -def Algebra.TensorProduct.rightAlgebra' : Algebra A (D ⊗[R] A) := - Algebra.TensorProduct.includeRight.toRingHom.toAlgebra' (by - simp only [AlgHom.toRingHom_eq_coe, RingHom.coe_coe, Algebra.TensorProduct.includeRight_apply] - intro a b - apply TensorProduct.induction_on (motive := fun b ↦ 1 ⊗ₜ[R] a * b = b * 1 ⊗ₜ[R] a) - · simp only [mul_zero, zero_mul] - · intro d a' - simp only [Algebra.TensorProduct.tmul_mul_tmul, one_mul, mul_one, - NonUnitalCommSemiring.mul_comm] - · intro x y hx hy - rw [left_distrib, hx, hy, right_distrib] - ) - -- this makes a diamond for Algebra A (A ⊗[R] A) which will never happen here -attribute [local instance] Algebra.TensorProduct.rightAlgebra' +attribute [local instance] Algebra.TensorProduct.rightAlgebra -- These seem to be missing instance [Module.Finite R D] : Module.Finite A (D ⊗[R] A) := sorry @@ -58,7 +42,7 @@ instance [Module.Free R D] : Module.Free A (D ⊗[R] A) := sorry end missing_instances -attribute [local instance] Algebra.TensorProduct.rightAlgebra' +attribute [local instance] Algebra.TensorProduct.rightAlgebra variable (K : Type*) [Field K] [NumberField K] variable (D : Type*) [DivisionRing D] [Algebra K D] @@ -81,7 +65,7 @@ noncomputable abbrev incl₁ : Dˣ →* Dfx K D := Units.map Algebra.TensorProduct.includeLeftRingHom.toMonoidHom noncomputable abbrev incl₂ : (FiniteAdeleRing (𝓞 K) K)ˣ →* Dfx K D := - Units.map Algebra.TensorProduct.rightAlgebra'.toMonoidHom + Units.map Algebra.TensorProduct.rightAlgebra.toMonoidHom -- Voight "Main theorem 27.6.14(b) (Fujisaki's lemma)" /-!