-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_data.py
39 lines (30 loc) · 1.51 KB
/
generate_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import pandas as pd
import numpy as np
import datetime
# Parameters
num_pods = 10
time_interval_minutes = 10
duration_hours = 72 # 3 days
# Generate timestamps
timestamps = pd.date_range(start=datetime.datetime.now(), periods=duration_hours*6, freq=f'{time_interval_minutes}T')
# Generate synthetic CPU and memory usage data
data = {
'timestamp': np.tile(timestamps, num_pods),
'pod_name': np.repeat([f'pod_{i+1}' for i in range(num_pods)], len(timestamps)),
'cpu_usage': np.random.uniform(low=0.1, high=1.0, size=len(timestamps) * num_pods), # CPU usage between 0.1 and 1.0 cores
'memory_usage': np.random.uniform(low=100, high=1000, size=len(timestamps) * num_pods) # Memory usage between 100MB and 1000MB
}
# Create DataFrame
df = pd.DataFrame(data)
# Calculate derived features
df['cpu_memory_ratio'] = df['cpu_usage'] / df['memory_usage']
# Simulate target metric (e.g., number of replicas needed)
df['target_metric'] = np.random.randint(low=1, high=5, size=len(df))
# Preprocess the data (handle missing values and normalization)
df.fillna(method='ffill', inplace=True)
df['cpu_usage'] = (df['cpu_usage'] - df['cpu_usage'].mean()) / df['cpu_usage'].std()
df['memory_usage'] = (df['memory_usage'] - df['memory_usage'].mean()) / df['memory_usage'].std()
df['cpu_memory_ratio'] = (df['cpu_memory_ratio'] - df['cpu_memory_ratio'].mean()) / df['cpu_memory_ratio'].std()
# Save to CSV
df.to_csv('synthetic_pod_usage_data.csv', index=False)
print("Synthetic data generated and saved to 'synthetic_pod_usage_data.csv'.")