-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain.py
40 lines (29 loc) · 1.09 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
import tensorflow as tf
import config
import models
from input_data import AudioWrapper
from helper import Trainer, Evaluator
def train(args):
is_training = True
session = tf.compat.v1.Session(config=config.TF_SESSION_CONFIG)
dataset = AudioWrapper(args, 'train', is_training, session)
wavs, labels = dataset.get_input_and_output_op()
model = models.__dict__[args.arch](args)
model.build(wavs=wavs, labels=labels, is_training=is_training)
trainer = Trainer(model, session, args, dataset)
trainer.train()
def evaluate(args):
is_training = False
session = tf.compat.v1.Session(config=config.TF_SESSION_CONFIG)
dataset = AudioWrapper(args, args.dataset_name, is_training, session)
wavs, labels = dataset.get_input_and_output_op()
model = models.__dict__[args.arch](args)
model.build(wavs=wavs, labels=labels, is_training=is_training)
evaluator = Evaluator(model, session, args, dataset)
evaluator.evaluate()
if __name__ == "__main__":
args = config.arg_config()
if args.mod == 'train':
train(args)
else:
evaluate(args)