-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtenet_fusion.py
140 lines (105 loc) · 4.69 KB
/
tenet_fusion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import tensorflow as tf
import tensorflow.contrib.slim as slim
import os
import config
import models
from input_data import AudioWrapper
def routine_restore_and_initialize(saver, args, session):
session.run(tf.compat.v1.global_variables_initializer())
session.run(
tf.compat.v1.local_variables_initializer()) # for metrics
if args.checkpoint_path:
saver.restore(session, args.checkpoint_path)
print('restore from {}'.format(args.checkpoint_path))
else:
print('from init model')
def cpoy_parms(list_m, list_t, session):
op_list = []
for v, t in zip(list_m, list_t):
op_list.append(t.assign(v))
pass
_ = session.run(op_list)
def get_padding_list(kernel_list, is_narrow):
zero_list = []
n_channel = 48 if is_narrow else 96
for kernel in kernel_list:
pad_dim = (9 - kernel) // 2
if pad_dim <= 0:
continue
zero_list.append(tf.zeros([pad_dim] + [1, n_channel, 1]))
return zero_list
def pad_weights(m_weights, kernel_list, is_narrow):
outs = []
kernel_num = len(kernel_list)
zero_list = get_padding_list(kernel_list, is_narrow)
for i in range(len(m_weights)//kernel_num):
for j in range(kernel_num-1):
v = m_weights[i*kernel_num + j]
outs.append(tf.concat([zero_list[j], v, zero_list[j]], 0))
# append 9*1 kernel
outs.append(m_weights[i*kernel_num + kernel_num-1])
return outs
def fuse_weights_betas(m_weights, m_betas, kernel_list, is_narrow):
m_weights_ = pad_weights(m_weights, kernel_list, is_narrow)
kernel_num = len(kernel_list)
output_weights = []
output_betas = []
for idx in range(len(m_weights_)//kernel_num):
weights = []
betas = []
for j in range(kernel_num):
weight = m_weights_[idx*kernel_num+j]
beta = m_betas[(idx*kernel_num+j)*3]
mean = m_betas[(idx*kernel_num+j)*3+1]
vari = m_betas[(idx*kernel_num+j)*3+2]
n_channel = 48 if is_narrow else 96
weights.append(tf.reshape(
(tf.squeeze(weight) / tf.math.sqrt(vari)), [-1, 1, n_channel, 1]))
betas.append(beta - mean / tf.math.sqrt(vari))
output_weights.append(tf.add_n(weights))
output_betas.append(tf.add_n(betas))
return output_weights, output_betas
def fusion_tenet(list_v, saver_m, kernel_list, args, session):
list_model_m = [v for v in list_v if v.name.startswith('MTENet')]
list_model_t = [v for v in list_v if v.name.startswith('TENet')]
is_narrow = list_model_m[0].name.split('/')[0].endswith('Narrow')
m_weights = [v for v in list_model_m if v.name.split(
'/')[-1].startswith('depthwise_weights')]
m_betas = [v for v in list_model_m if v.name.split(
'/')[-2].startswith('BatchNorm') and v.name.split('/')[-3].startswith('depthwise')]
t_weights = [v for v in list_model_t if v.name.split(
'/')[-1].startswith('depthwise_weights')]
t_betas = [v for v in list_model_t if v.name.split(
'/')[-1].startswith('beta') and v.name.split('/')[-3].startswith('depthwise')]
m_others = [v for v in list_model_m if v not in m_weights + m_betas]
t_others = [v for v in list_model_t if v not in t_weights +
t_betas and not v.name.split('/')[-3].startswith('depthwise')]
output_weights, output_betas = fuse_weights_betas(
m_weights, m_betas, kernel_list, is_narrow)
routine_restore_and_initialize(saver_m, args, session)
cpoy_parms(m_others, t_others, session)
cpoy_parms(output_weights, t_weights, session)
cpoy_parms(output_betas, t_betas, session)
def main(args):
is_training = False
session = tf.compat.v1.Session(config=config.TF_SESSION_CONFIG)
dataset = AudioWrapper(args, args.dataset_name, is_training, session)
wavs, labels = dataset.get_input_and_output_op()
kernel_list = args.kernel_list
model_m = models.__dict__[args.arch](args)
model_m.build(wavs=wavs, labels=labels, is_training=is_training)
args.kernel_list = None
model_t = models.__dict__[args.arch](args)
model_t.build(wavs=wavs, labels=labels, is_training=is_training)
list_v = slim.get_variables_to_restore()
saver_m = tf.compat.v1.train.Saver(var_list=model_m.model_variables)
saver_t = tf.compat.v1.train.Saver(var_list=model_t.model_variables)
fusion_tenet(list_v, saver_m, kernel_list, args, session)
if not os.path.exists(args.save_folder):
os.makedirs(args.save_folder)
saver_t.save(session, os.path.join(args.save_folder, args.arch),
global_step=30000)
print('Fusion finished!')
if __name__ == "__main__":
args = config.arg_config()
main(args)