forked from zhizhongpu/solutions_econometrics_hansen
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathChap5.tex
193 lines (153 loc) · 6.32 KB
/
Chap5.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
\documentclass[12pt,letterpaper,reqno]{amsart}
\setlength{\oddsidemargin}{.0in}
\setlength{\evensidemargin}{.0in}
\setlength{\textwidth}{6.5in}
\setlength{\topmargin}{-.3in}
\setlength{\headsep}{.20in}
\setlength{\textheight}{9.in}
\usepackage{amsmath}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsthm}
\usepackage[all]{xy}
\usepackage{graphicx}
\usepackage{setspace}
\doublespace
%Here are some user-defined notations
\newcommand{\E}{\mathbb E}
\newcommand{\R}{\mathbb R}
\newcommand{\I}{\mathbb I}
%improving spacing in tables (space above and below characters in a row)
\newcommand{\tfix}{\rule{0pt}{2.6ex}}
\newcommand{\bfix}{\rule[-1.2ex]{0pt}{0pt}}
%Here are commands with variable inputs
\newcommand{\intf}[1]{\int_a^b{#1}\,dx}
\newcommand{\intfb}[3]{\int_{#1}^{#2}{#3}\,dx}
\newcommand{\pln}[1]{$\sm${\tt #1}}
\newcommand{\bgn}[1]{$\tt {\sm}begin\{#1\}$}
\newcommand{\nd}[1]{$\tt {\sm}end\{#1\}$}
\newcommand{\marginalfootnote}[1]{%
\footnote{#1}
\marginpar[\hfill{\sf\thefootnote}]{{\sf\thefootnote}}}
\newcommand{\edit}[1]{\marginalfootnote{#1}}
\newtheorem*{wellorder*}{Well Ordering Principle}
%These commands deal with theorem-like environments (i.e., italic)
\theoremstyle{plain}
\newtheorem{theorem}{Theorem}[section]
\newtheorem{corollary}[theorem]{Corollary}
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{conjecture}[theorem]{Conjecture}
%\newtheorem{wellorder}[theorem]{Well Ordering Principle}
%\newtheorem{equation}{Theorem}[section]
%These deal with definition-like environments (i.e., non-italic)
\theoremstyle{definition}
\newtheorem{definition}[theorem]{Definition}
\newtheorem{example}[theorem]{Example}
\newtheorem{remark}[theorem]{Remark}
\theoremstyle{definition}
\newtheorem{Exercise}{Exercise 5.}
%This numbers equations by section
\numberwithin{equation}{section}
%\numberwithin{equation}{Theorem}[section]
%This is for hypertext references
\usepackage{color}
\usepackage{hyperref}
\hypersetup{
colorlinks=true,
linkcolor=blue,
filecolor=blue,
urlcolor=blue,
pdftitle={Overleaf Example},
pdfpagemode=FullScreen,
}
\begin{document}
\author{Zhizhong Pu}
\title{Solutions - Chapter 5}
\date{May 2023}
\maketitle
\thispagestyle{empty}
%% 5.1
\begin{Exercise} Show that if $Q\sim \chi^2_r$, then $\E[Q]=r$ and $Var[Q]=2r$
First write $Q=\sum_{i=1}^rZ_i$ with $Z_i\sim\mathcal{N}(0,1)$ i.i.d.. Then $\E[Z_i^2]=1$ and $\E[Z_i^4]=3$ are easy to calculate.
Then $\E[Q]=r$ and
\[
Var(Q) = r Var(Z_i^2) = r (\E[Z_i^4] - \E[Z_i^2]^2) = 2r
\]
\end{Exercise}
%% 5.2
\begin{Exercise} Show that if $e \sim \mathcal{N}(0,\I_n\sigma^2)$ and $H'H=\I_n$ then $u=H'e \sim \mathcal{N}(0,\I_n\sigma^2)$
By Theorem 5.3.3, we have
\[
u = H'e \sim \mathcal{N}(H'0,H'\I_n\sigma^2H) = \mathcal{N}(0,H'H\sigma^2) = \mathcal{N}(0,\I_n\sigma^2)
\]
\end{Exercise}
%% 5.3
\begin{Exercise} Show that if $e \sim \mathcal{N}(0,AA')$ then $u=A^{-1}e \sim \mathcal{N}(0,\I_n)$
By Theorem 5.3.3, we have
\[
u = A^{-1} e \sim \mathcal{N}(A^{-1} 0,A^{-1}AA' (A^{-1})' = \mathcal{N}(0,\I_n)
\]
\end{Exercise}
%% 5.4
\begin{Exercise}\end{Exercise}
%% 5.5
\begin{Exercise} Show that $\hat{Y}_i|X \sim \mathcal{N}(X'_i\beta,\sigma^2h_i)$ where are the leverage values (3.40).
\[
\hat{Y} = PY = X(X'X)^{-1}X'(X\beta+e) = X\beta + X(X'X)^{-1}X'e = X\beta + Pe
\]
Then
\[
\hat{Y} \sim \mathcal{N}(X\beta, PPVar(e)) \equiv \mathcal{N}(X\beta, \sigma^2P)
\]
Since $h_i$ specifies the $i$th diagonal element of $P$, then this shows that $\hat{Y}_i|X \sim \mathcal{N}(X'_i\beta,\sigma^2h_i)$
\end{Exercise}
%% 5.6
\begin{Exercise} \end{Exercise}
%% 5.7
\begin{Exercise} In the normal regression model show that the robust covariance matrices $V_{\hat{\beta}}^{HCi}$ are independent of the OLS estimator $\hat{\beta}$, conditional on $X$.
Recall
\[
V_{\hat{\beta}}^{HC0} = (X'X)^{-1} (\sum_{i=1}^n X_iX_i' \widehat{e_i^2} ) (X'X^{-1})
\]
\[
V_{\hat{\beta}}^{HC1} = \frac{n}{n-k} (X'X)^{-1} (\sum_{i=1}^n X_iX_i' \widehat{e_i^2} ) (X'X^{-1})
\]
\[
V_{\hat{\beta}}^{HC2} = (X'X)^{-1} (\sum_{i=1}^n (1-h_i)^{-1} X_iX_i' \widehat{e_i^2} ) (X'X)^{-1}
\]
\[
V_{\hat{\beta}}^{HC3} = (X'X)^{-1} (\sum_{i=1}^n (1-h_i)^{-2} X_iX_i' \widehat{e_i^2} ) (X'X)^{-1}
\]
Then it can be seen that the only stochastic term in each of the variance estimators is $\widehat{e_i^2}$ after conditioning on $X$. By Theorem 5.6, we have $\widehat{e_i^2}$ being independent of $\hat{\beta}$ conditional on $X$.
\end{Exercise}
%% 5.8
\begin{Exercise} Let $F(u)$ be the distribution function of a random variable $X$ whose density is symmetric about $0$. Show that $F(-u) = 1-F(u)$.
Let $f(u)$ be the p.d.f. of the distribution specified by $F(u)$. We know that $f(u)$ is symmetric about $0$, then $F(0)=0.5$ and for any $x$ on the support of $f$, we have:
\[
\int_{-u}^0f(x) = \int_0^uf(x) \Rightarrow F(0) - F(-u) = F(u) - F(0) \Rightarrow F(-u) = 1-F(u)
\]
\end{Exercise}
%% 5.9
\begin{Exercise} Let $\hat{C}_\beta=[L,U]$ be a $1-\alpha$ confidence interval for $\beta$,and consider the transformation where $g()$ is monotonically increasing. Consider the confidence interval $\hat{C}_\theta = [g(L),g(U)]$ for $\theta$. Show that $Pr(\theta \in \hat{C}_\theta) = Pr(\beta \in \hat{C}_\beta)$.
Note that since $g()$ is monotonically increasing, then $g(x) \le g(L) \Leftrightarrow x \le L$. Then
\[
Pr(\beta \in \hat{C}_\beta) = Pr(\beta \le U) - Pr(\beta \le L) = Pr(g(\beta) \le g(U)) - Pr(g(\beta) \le g(L)) = Pr(\theta \in \hat{C}_\theta)
\]
\end{Exercise}
%% 5.10
\begin{Exercise} \end{Exercise}
%% 5.11
\begin{Exercise} \end{Exercise}
%% 5.12
\begin{Exercise} In the normal regression model let $s^2$ be the unbiased estimator of the error variance $\sigma^2$ from (4.31). Show that $Var(s^2) = 2\sigma^4 / (n-k)$ and that it is strictly larger than the Cramér-Rao Lower Bound for $\sigma^2$
By Theorem 5.7 we have
\[
\frac{(n-k)s^2}{\sigma^2} \sim \chi^2_{n-k}
\]
Note that the variance of LHS is $2(n-k)$, and $(n-k)$ and $\sigma$ are non-stochastic, so
\[
\frac{(n-k)^2}{\sigma^4} Var(s^2) = 2(n-k)
\]
This shows that $Var(s^2) = 2\sigma^4 / (n-k)$. Note that $k>0$ and the Cramér-Rao Lower Bound for $\sigma^2$ is $2\sigma^4/n$ from (5.20), so $Var(s^2) = 2\sigma^4 / (n-k) > 2\sigma^4/n $
\end{Exercise}
\end{document}