-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathLHRSScalerEvtHandler.cxx
1023 lines (923 loc) · 39.8 KB
/
LHRSScalerEvtHandler.cxx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//////////////////////////////////////////////////////////////////
//
// ScalerScalerEvtHandler
//
// Event handler for Hall A scalers (THaScalerEvtHandler)
// R. Michaels, Sept, 2014
//
// Lineage:
// - Based on TriScalerEvtHandler for tritium experiments (Hanjie Liu, UMass)
// - Adapted for SBS experiments (David Flay, JLab)
//
// This class does the following
// For a particular set of event types (here, event type 140)
// decode the scalers and put some variables into global variables.
// The global variables can then appear in the Podd output tree T.
// In addition, a tree "TS" is created by this class; it contains
// just the scaler data by itself. Note, the "fName" is concatenated
// with "TS" to ensure the tree is unqiue; further, "fName" is
// concatenated with the name of the global variables, for uniqueness.
// The list of global variables and how they are tied to the
// scaler module and channels is in the scaler.map file, or could
// be hardcoded here.
// NOTE: if you don't have the scaler map file (e.g. db_LeftScalevt.dat)
// there will be no variable output to the Trees.
//
// To use in the analyzer, your setup script needs something like this
// gHaEvtHandlers->Add (new LHRSScalerEvtHandler("Left","HA scaler event type 140"));
//
// To enable debugging you may try this in the setup script
//
// LHRSScalerEvtHandler *lscaler = new LHRSScalerEvtHandler("Left","HA scaler event type 140");
// lscaler->SetDebugFile("LeftScaler.txt");
// gHaEvtHandlers->Add (lscaler);
//
/////////////////////////////////////////////////////////////////////
#include "LHRSScalerEvtHandler.h"
#include "THaAnalysisObject.h"
#include "THaEvtTypeHandler.h"
#include "THaCodaData.h"
#include "THaEvData.h"
#include "THaVarList.h"
#include "THaString.h"
#include "THaAnalyzer.h"
#include "GenScaler.h"
#include "Scaler3800.h"
#include "Scaler3801.h"
#include "Scaler1151.h"
#include "Scaler560.h"
#include "VarDef.h"
#include "Textvars.h"
#include "TNamed.h"
#include "TMath.h"
#include "TString.h"
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <sstream>
using namespace std;
using namespace Decoder;
using namespace THaString;
static const UInt_t ICOUNT = 1;
static const UInt_t IRATE = 2;
static const UInt_t ICURRENT = 3;
static const UInt_t ICHARGE = 4;
static const UInt_t ITIME = 5;
static const UInt_t ICUT = 6;
static const UInt_t MAXCHAN = 32;
static const UInt_t MAXTEVT = 5000;
static const UInt_t defaultDT = 4;
LHRSScalerEvtHandler::LHRSScalerEvtHandler(const char *name, const char* description)
: THaEvtTypeHandler(name,description),evcount(0),fNormIdx(-1),fNormSlot(-1),
dvars(0),fScalerTree(0),fUseFirstEvent(kTRUE),
fClockChan(-1),fClockFreq(-1),fLastClock(0),fClockOverflows(0),
fTotalTime(0),fPrevTotalTime(0),fDeltaTime(-1),
dvarsFirst(0),dvars_prev_read(0),fPhysicsEventNumber(-1),
fNumBCMs(0),fbcm_Current_Threshold_Index(0),fbcm_Current_Threshold(0),
fBCM_Gain(0),fBCM_Offset(0),fBCM_SatOffset(0),fBCM_SatQuadratic(0),fBCM_delta_charge(0)
{
rdata = new UInt_t[MAXTEVT];
fDebugFile = nullptr; // initialize the pointer to null
// for by hand calculation of rates
scal_prev_read.clear();
scal_present_read.clear();
scal_overflows.clear();
}
//______________________________________________________________________________
LHRSScalerEvtHandler::~LHRSScalerEvtHandler()
{
delete [] rdata;
if (fScalerTree) {
delete fScalerTree;
}
// added by D Flay 11/9/21
delete [] dvars_prev_read;
delete [] dvars;
delete [] dvarsFirst;
delete [] fBCM_Gain;
delete [] fBCM_Offset;
delete [] fBCM_SatOffset;
delete [] fBCM_SatQuadratic;
delete [] fBCM_delta_charge;
}
//______________________________________________________________________________
Int_t LHRSScalerEvtHandler::End( THaRunBase* r)
{
if (fScalerTree) fScalerTree->Write();
//Insert here the addition of summary filling
THaAnalyzer* analyzer = THaAnalyzer::GetInstance();
if(analyzer!=nullptr){// check that the analyzer actually exists... otherwise, skip
const char* summaryfilename = analyzer->GetSummaryFileName();
cout << "LHRSScalerEvtHandler Summary in " << summaryfilename << endl;
if( strcmp(summaryfilename,"")!=0 ) {
ofstream ostr(summaryfilename, std::ofstream::app);
if( ostr ) {
// Write to file via cout
//streambuf* cout_buf = cout.rdbuf();
//cout.rdbuf(ostr.rdbuf());
TDatime now;
ostr << "LHRS scalers Summary " //<< fRun->GetNumber()
<< " completed " << now.AsString()
<< endl << " count " << evcount << endl
<< endl;
for (UInt_t i = 0; i < scalerloc.size(); i++) {
TString name = scalerloc[i]->name;
//tinfo = name + "/D";
//fScalerTree->Branch(name.Data(), &dvars[i], tinfo.Data(), 4000);
ostr << " Scaler " << name.Data() << " value: " << dvars[i] << endl;
}
//std::vector<Decoder::GenScaler*> scalers;
//std::vector<ScalerVar*> scalerloc;
ostr << endl;
//cout.rdbuf(cout_buf);
ostr.close();
}
}
}
return 0;
}
//______________________________________________________________________________
Int_t LHRSScalerEvtHandler::Analyze(THaEvData *evdata)
{
Int_t lfirst=1;
if ( !IsMyEvent(evdata->GetEvType()) ) return -1;
if (fDebugFile) {
*fDebugFile << endl << "---------------------------------- "<<endl<<endl;
*fDebugFile << "\nEnter LHRSScalerEvtHandler for fName = "<<fName<<endl;
EvDump(evdata);
}
if (lfirst && !fScalerTree) {
lfirst = 0; // Can't do this in Init for some reason
TString sname1 = "TS";
TString sname2 = sname1 + fName;
TString sname3 = fName + " Scaler Data";
if (fDebugFile) {
*fDebugFile << "\nAnalyze 1st time for fName = "<<fName<<endl;
*fDebugFile << sname2 << " " <<sname3<<endl;
}
fScalerTree = new TTree(sname2.Data(),sname3.Data());
fScalerTree->SetAutoSave(200000000);
TString name, tinfo;
name = "evcount";
tinfo = name + "/D";
fScalerTree->Branch(name.Data(), &evcount, tinfo.Data(), 4000);
// create the physics event number branch
fScalerTree->Branch("evnum",&fPhysicsEventNumber,"evnum/L");
for (UInt_t i = 0; i < scalerloc.size(); i++) {
name = scalerloc[i]->name;
tinfo = name + "/D";
fScalerTree->Branch(name.Data(), &dvars[i], tinfo.Data(), 4000);
}
} // if (lfirst && !fScalerTree)
// Parse the data, load local data arrays.
Int_t ndata = evdata->GetEvLength();
if(fDebugFile) *fDebugFile << "NDATA = " << dec << ndata << std::endl;
if (ndata >= static_cast<Int_t>(MAXTEVT)) {
cout << "LHRSScalerEvtHandler:: ERROR: Event length crazy "<<endl;
ndata = MAXTEVT-1;
}
if (fDebugFile) *fDebugFile<<"\n\nLHRSScalerEvtHandler :: Debugging event type "<<dec<<evdata->GetEvType()<<endl<<endl;
// get the physics event number
fPhysicsEventNumber = evdata->GetEvNum();
// local copy of data
// NOTE: event is ASCII, not 32-bit binary! We need to convert ASCII to 32-bit binary
for (Int_t i=0; i<ndata; i++) rdata[i] = evdata->GetRawData(i);
Int_t nskip=0;
UInt_t *P = rdata;
// UInt_t *Pstop = rdata+ndata;
int k=0;
Int_t ifound=0;
Int_t itimeout=0;
UInt_t NScalers=0;
// Added by D Flay (10/27/21) for parsing data
std::string word[MAXTEVT];
UInt_t A[MAXTEVT];
int NWORDS=0;
// skip the first 4 words because it looks like the first word associated with
// the scalers starts there...
P = P + 4;
// do the conversion
char *pc = (char *)P;
NWORDS = ParseData(pc,word,A);
UInt_t *p = A;
UInt_t *pstop = p + ndata - 4;
if (fDebugFile) *fDebugFile << "number of words: " << NWORDS << endl;
// char msg[200];
AnalyzeBuffer(ndata,rdata);
while (p < pstop && k < ndata) {
if (fDebugFile) {
// *fDebugFile << "p and pstop "<< k++ << " " << p << " " << pstop << " data = " << hex << *p << " " << dec << endl;
*fDebugFile << "k = " << k << " p = " << p << " pstop = " << pstop << " data = " << hex << *p << " (hex), " << dec << endl;
}
nskip = 1;
itimeout=0;
NScalers = scalers.size();
if (fDebugFile)*fDebugFile << "**** NUM SCALERS = " << NScalers << std::endl;
for (UInt_t j=0; j<NScalers; j++) {
// bump pointer until scaler found, and don't decode if already found for this event.
if (scalerloc[j]->found) continue;
if (fDebugFile) *fDebugFile << "Slot " << scalers[j]->GetSlot() << endl;
while (p < pstop) {
if (scalers[j]->IsSlot(*p) == kTRUE) {
scalerloc[j]->found=kTRUE;
ifound = 1;
goto found1;
}
p++;
if (itimeout++ > 5000) { // avoid infinite loop
std::cout << "LHRSScalerEvtHandler:: cannot find a slot "<< std::endl;
goto giveup1;
}
}
found1:
if(p==pstop && ifound==0) break;
if (fDebugFile)*fDebugFile << "\n[LHRSScalerEvtHandler::Analyze]: FOUND EVENT 140!" << std::endl;
nskip = scalers[j]->Decode(p);
if (fDebugFile && nskip > 1) {
*fDebugFile << "\n===== Scaler # "<<j<<" fName = "<<fName<<" nskip = "<<nskip<<endl;
scalers[j]->DebugPrint(fDebugFile);
}
if (nskip > 1) goto continue1;
}
continue1:
p = p + nskip;
k++;
}
giveup1:
if (fDebugFile) {
*fDebugFile << "Finished with decoding. "<<endl;
*fDebugFile << " Found flag = "<<ifound<<endl;
}
// L-HRS has headers which are different from R-HRS, but both are
// event type 140 and come here. If you found no headers, it was
// the other arms event type. (The arm is fName).
if (!ifound) return 0;
// // The correspondance between dvars and the scaler and the channel
// // will be driven by a scaler.map file, or could be hard-coded.
// for (size_t i = 0; i < scalerloc.size(); i++) {
// size_t ivar = scalerloc[i]->ivar;
// size_t idx = scalerloc[i]->index;
// size_t ichan = scalerloc[i]->ichan;
// if (fDebugFile) *fDebugFile << "Debug dvars i = "<<i<<", var = "<<ivar<<", index = "<<idx<<", ch = "<<ichan<<endl;
// if( (ivar<scalerloc.size()) && (idx<scalers.size()) && (ichan<MAXCHAN) ){
// if (scalerloc[ivar]->ikind == ICOUNT) dvars[ivar] = scalers[idx]->GetData(ichan);
// if (scalerloc[ivar]->ikind == IRATE) dvars[ivar] = scalers[idx]->GetRate(ichan);
// if (fDebugFile) *fDebugFile << " dvars kind = "<<scalerloc[ivar]->ikind<<", value = "<<dvars[ivar]<<endl;
// }else{
// cout << "LHRSScalerEvtHandler:: ERROR:: incorrect index "<<ivar<<" "<<idx<<" "<<ichan<<endl;
// }
// }
// By-hand calculation of rates (added by D Flay 11/9/21)
UInt_t thisClock = scalers[fNormIdx]->GetData(fClockChan);
// FIXME: empirically found maxima (is this right?)
UInt_t CLOCK_MAX = 106680229;
// UInt_t SCALER_MAX = 816862727;
// UInt_t delta=0; // for overflow accumulation
if(thisClock<fLastClock){ // Count clock scaler wrap arounds
fClockOverflows++;
if(fLastClock>CLOCK_MAX) CLOCK_MAX = fLastClock; // update CLOCK_MAX if necessary
// delta = kMaxUInt - fLastClock;
if(fDebugFile){
*fDebugFile << "*** CLOCK OVERFLOW! ***" << std::endl;
*fDebugFile << "cntr = " << fClockOverflows << std::endl;
*fDebugFile << "this clock = " << thisClock << std::endl;
*fDebugFile << "last clock = " << fLastClock << std::endl;
// *fDebugFile << "CLOCK_MAX = " << CLOCK_MAX << std::endl;
// *fDebugFile << "delta = " << delta << std::endl;
*fDebugFile << "kMaxUInt = " << kMaxUInt << std::endl;
*fDebugFile << "***********************" << std::endl;
}
// fTotalTime = (thisClock + fLastClock)/fClockFreq; // ( thisClock + ( ( 1. + (Double_t)kMaxUInt )*fClockOverflows - fLastClock ) )/fClockFreq;
}
// FIXME
fTotalTime = ( thisClock + ( ( (Double_t)fClockOverflows )*kMaxUInt + fClockOverflows ) )/fClockFreq; // this is definitely not right.
// fTotalTime = ( thisClock + ( ( (Double_t)fClockOverflows )*CLOCK_MAX + fClockOverflows) )/fClockFreq; // this is closer
// fTotalTime = ( thisClock + ( ( (Double_t)fClockOverflows )*CLOCK_MAX + (Double_t)fClockOverflows)*delta )/fClockFreq; // not right
fDeltaTime = fTotalTime - fPrevTotalTime;
if(fDebugFile){
*fDebugFile << "======== Time Check ========" << std::endl;
*fDebugFile << "Clock frequency = " << fClockFreq << std::endl;
*fDebugFile << "Current clock = " << thisClock << std::endl;
*fDebugFile << "Previous clock = " << fLastClock << std::endl;
*fDebugFile << "Current time = " << fTotalTime << std::endl;
*fDebugFile << "Previous time = " << fPrevTotalTime << std::endl;
*fDebugFile << "delta time = " << fDeltaTime << std::endl;
*fDebugFile << "============================" << std::endl;
}
if(fDeltaTime==0){
cout << " ******************* Severe Warning ****************************" << endl;
cout << " [LHRSScalerEvtHandler]: Found fDeltaTime is zero!! " << endl;
cout << " ******************* Alert DAQ experts ****************************" << endl;
}
// set up for next event
fLastClock = thisClock;
fPrevTotalTime = fTotalTime;
UInt_t scalerData=0;
Double_t rate=0;
Double_t scal_current=0;
Int_t nscal=0;
for(size_t i=0;i<scalerloc.size();i++){
size_t ivar = scalerloc[i]->ivar;
size_t idx = scalerloc[i]->index;
size_t ichan = scalerloc[i]->ichan;
if (fDebugFile) *fDebugFile << "event " << evcount << " Debug dvars i = "<<i<<", var = "<<ivar<<", index = "<<idx<<", ch = "<<ichan<<endl;
if(evcount==0){
if( (ivar<scalerloc.size()) && (idx<scalers.size()) && (ichan<MAXCHAN) ){
if(fUseFirstEvent){
scalerData = scalers[idx]->GetData(ichan);
if(scalerloc[ivar]->ikind==ICOUNT){
dvars[ivar] = scalerData;
scal_present_read.push_back(scalerData);
scal_prev_read.push_back(0);
scal_overflows.push_back(0);
dvarsFirst[ivar] = 0.0;
}
if(scalerloc[ivar]->ikind==IRATE){
scalerData = scalers[idx]->GetData(ichan);
rate = scalerData/fDeltaTime;
dvars[ivar] = rate;
dvarsFirst[ivar] = rate;
if(fDebugFile){
*fDebugFile << " RATE CALC ivar " << ivar << " diff = " << scalerData
<< " dtime = " << fDeltaTime << " rate = " << rate << std::endl;
}
}
if(scalerloc[ivar]->ikind == ICURRENT || scalerloc[ivar]->ikind == ICHARGE){
Int_t bcm_ind=-1;
for(Int_t itemp =0; itemp<fNumBCMs;itemp++){
size_t match = string(scalerloc[ivar]->name.Data()).find(string(fBCM_Name[itemp]));
if (match!=string::npos){
bcm_ind=itemp;
}
}
if(scalerloc[ivar]->ikind == ICURRENT){
dvars[ivar]=0.;
if (bcm_ind != -1) {
dvars[ivar]=((scalers[idx]->GetData(ichan))/fDeltaTime-fBCM_Offset[bcm_ind])/fBCM_Gain[bcm_ind];
dvars[ivar]=dvars[ivar]+fBCM_SatQuadratic[bcm_ind]*TMath::Power(TMath::Max(dvars[ivar]-fBCM_SatOffset[bcm_ind],0.0),2.0);
}
if (bcm_ind==fbcm_Current_Threshold_Index) scal_current= dvars[ivar];
}
if(scalerloc[ivar]->ikind == ICHARGE){
if(bcm_ind != -1){
Double_t cur_temp=((scalers[idx]->GetData(ichan))/fDeltaTime-fBCM_Offset[bcm_ind])/fBCM_Gain[bcm_ind];
cur_temp=cur_temp+fBCM_SatQuadratic[bcm_ind]*TMath::Power(TMath::Max(cur_temp-fBCM_SatOffset[bcm_ind],0.0),2.0);
fBCM_delta_charge[bcm_ind]=fDeltaTime*cur_temp;
dvars[ivar]+=fBCM_delta_charge[bcm_ind];
}
}
// printf("1st event %i index %i fBCMname %s scalerloc %s offset %f gain %f computed %f\n",evcount, bcm_ind, fBCM_Name[bcm_ind],scalerloc[ivar]->name.Data(),fBCM_Offset[bcm_ind],fBCM_Gain[bcm_ind],dvars[ivar]);
//
}
}else{
// not using first event
if(scalerloc[ivar]->ikind==ICOUNT){
scalerData = scalers[idx]->GetData(ichan);
dvarsFirst[ivar] = scalerData;
scal_present_read.push_back(dvarsFirst[ivar]);
scal_prev_read.push_back(0);
}
if(scalerloc[ivar]->ikind==IRATE){
scalerData = scalers[idx]->GetData(ichan);
rate = scalerData/fDeltaTime;
dvarsFirst[ivar] = rate;
if(fDebugFile) *fDebugFile << " RATE CALC ivar " << ivar << " diff = " << scalerData << " dtime = " << fDeltaTime << " rate = " << rate << std::endl;
}
if(scalerloc[ivar]->ikind==ICURRENT || scalerloc[ivar]->ikind==ICHARGE){
Int_t bcm_ind=-1;
for(Int_t itemp =0; itemp<fNumBCMs;itemp++){
size_t match = string(scalerloc[ivar]->name.Data()).find(string(fBCM_Name[itemp]));
if(match!=string::npos){
bcm_ind=itemp;
}
}
if(scalerloc[ivar]->ikind == ICURRENT){
dvarsFirst[ivar]=0.0;
if(bcm_ind != -1){
dvarsFirst[ivar]=((scalers[idx]->GetData(ichan))/fDeltaTime-fBCM_Offset[bcm_ind])/fBCM_Gain[bcm_ind];
dvarsFirst[ivar]=dvarsFirst[ivar]+fBCM_SatQuadratic[bcm_ind]*TMath::Power(TMath::Max(dvars[ivar]-fBCM_SatOffset[bcm_ind],0.0),2.);
}
if(bcm_ind==fbcm_Current_Threshold_Index) scal_current= dvarsFirst[ivar];
}
if(scalerloc[ivar]->ikind == ICHARGE){
if(bcm_ind != -1){
Double_t cur_temp=((scalers[idx]->GetData(ichan))/fDeltaTime-fBCM_Offset[bcm_ind])/fBCM_Gain[bcm_ind];
cur_temp=cur_temp+fBCM_SatQuadratic[bcm_ind]*TMath::Power(TMath::Max(cur_temp-fBCM_SatOffset[bcm_ind],0.0),2.);
fBCM_delta_charge[bcm_ind]=fDeltaTime*cur_temp;
dvarsFirst[ivar]+=fBCM_delta_charge[bcm_ind];
}
}
}
}
}
}else{
// evcount != 0
if( (ivar<scalerloc.size()) && (idx<scalers.size()) && (ichan<MAXCHAN) ){
if(scalerloc[ivar]->ikind==ICOUNT) {
scalerData = scalers[idx]->GetData(ichan);
rate = 0;
if(scalerData<scal_prev_read[nscal]){
scal_overflows[nscal]++;
if(fDebugFile){
*fDebugFile << "*** OVERFLOW ENCOUNTERED! ***" << std::endl;
*fDebugFile << "scal_overflows[" << nscal << "] = " << scal_overflows[nscal] << std::endl;
*fDebugFile << "scal_prev_read[" << nscal << "] = " << scal_prev_read[nscal] << std::endl;
*fDebugFile << "scalerData = " << scalerData << std::endl;
*fDebugFile << "kMaxUInt = " << kMaxUInt << std::endl;
// *fDebugFile << "SCALER_MAX = " << SCALER_MAX << std::endl;
*fDebugFile << "*****************************" << std::endl;
}
dvars[ivar] = scalerData + (1+((Double_t)kMaxUInt))*scal_overflows[nscal] - dvarsFirst[ivar];
// SCALER_MAX = scal_prev_read[nscal]; // ok...
// if(scal_prev_read[nscal]>SCALER_MAX) SCALER_MAX = scal_prev_read[nscal];
// if(scal_prev_read[nscal]>kMaxUInt){
// dvars[ivar] = scalerData + (1+((Double_t)kMaxUInt))*scal_overflows[nscal] - dvarsFirst[ivar];
// }else{
// // dvars[ivar] = scalerData + scal_prev_read[nscal];
// dvars[ivar] = scalerData + (1+((Double_t)SCALER_MAX))*scal_overflows[nscal] - dvarsFirst[ivar];
// }
}else{
dvars[ivar] = scalerData;
}
scal_present_read[nscal] = dvars[ivar]; // scalerData;
nscal++;
}
if(scalerloc[ivar]->ikind==IRATE){
scalerData = scalers[idx]->GetData(ichan);
rate = 0;
UInt_t diff = 0;
if(scalerData<scal_prev_read[nscal-1]){
if(scal_prev_read[nscal-1]>kMaxUInt){
diff = (kMaxUInt-(scal_prev_read[nscal-1] - 1)) + scalerData;
}else{
diff = (scal_prev_read[nscal-1] - 1) + scalerData;
// diff = (SCALER_MAX-(scal_prev_read[nscal-1] - 1)) + scalerData;
}
if(fDebugFile){
*fDebugFile << "*** OVERFLOW ENCOUNTERED! ***" << std::endl;
*fDebugFile << "scal_prev_read[" << nscal-1 << "] = " << scal_prev_read[nscal-1] << std::endl;
*fDebugFile << "scalerData = " << scalerData << std::endl;
*fDebugFile << "diff = " << diff << std::endl;
*fDebugFile << "kMaxUInt = " << kMaxUInt << std::endl;
// *fDebugFile << "SCALER_MAX = " << SCALER_MAX << std::endl;
*fDebugFile << "*****************************" << std::endl;
}
}else{
diff = scalerData - scal_prev_read[nscal-1];
}
rate = diff/fDeltaTime;
dvars[ivar] = rate;
if(fDebugFile){
*fDebugFile << " RATE CALC ivar " << ivar << " scalerData = " << scalerData
<< " scal_prev_read = " << scal_prev_read[nscal-1]
<< " diff = " << diff
<< " dtime = " << fDeltaTime << " rate = " << rate << std::endl;
}
}
if(scalerloc[ivar]->ikind == ICURRENT || scalerloc[ivar]->ikind == ICHARGE)
{
Int_t bcm_ind=-1;
for(Int_t itemp =0; itemp<fNumBCMs;itemp++)
{
size_t match = string(scalerloc[ivar]->name.Data()).find(string(fBCM_Name[itemp]));
if (match!=string::npos)
{
bcm_ind=itemp;
}
}
if (scalerloc[ivar]->ikind == ICURRENT) {
dvars[ivar]=0;
if (bcm_ind != -1) {
UInt_t scaldata = scalers[idx]->GetData(ichan);
UInt_t diff;
if(scaldata < scal_prev_read[nscal-1]) {
diff = (kMaxUInt-(scal_prev_read[nscal-1] - 1)) + scaldata;
} else {
diff = scaldata - scal_prev_read[nscal-1];
}
dvars[ivar]=0.;
if (fDeltaTime>0) {
Double_t cur_temp=(diff/fDeltaTime-fBCM_Offset[bcm_ind])/fBCM_Gain[bcm_ind];
cur_temp=cur_temp+fBCM_SatQuadratic[bcm_ind]*TMath::Power(TMath::Max(cur_temp-fBCM_SatOffset[bcm_ind],0.0),2.);
dvars[ivar]=cur_temp;
}
}
if (bcm_ind == fbcm_Current_Threshold_Index) scal_current= dvars[ivar];
}
if (scalerloc[ivar]->ikind == ICHARGE) {
if (bcm_ind != -1) {
UInt_t scaldata = scalers[idx]->GetData(ichan);
UInt_t diff;
if(scaldata < scal_prev_read[nscal-1]) {
diff = (kMaxUInt-(scal_prev_read[nscal-1] - 1)) + scaldata;
} else {
diff = scaldata - scal_prev_read[nscal-1];
}
fBCM_delta_charge[bcm_ind]=0;
if (fDeltaTime>0) {
Double_t cur_temp=(diff/fDeltaTime-fBCM_Offset[bcm_ind])/fBCM_Gain[bcm_ind];
cur_temp=cur_temp+fBCM_SatQuadratic[bcm_ind]*TMath::Power(TMath::Max(cur_temp-fBCM_SatOffset[bcm_ind],0.0),2.);
fBCM_delta_charge[bcm_ind]=fDeltaTime*cur_temp;
}
dvars[ivar]+=fBCM_delta_charge[bcm_ind];
}
}
}
if (fDebugFile) *fDebugFile << " dvars "<<scalerloc[ivar]->ikind<<" "<<dvars[ivar]<<endl;
}
} // end of evcount if-else
// if(fDebugFile) *fDebugFile << "ivar " << ivar << " counts = " << scalerData << " rate = " << rate << std::endl;
} // end of for loop
evcount = evcount + 1.0;
// set up for next read
for(size_t j=0;j<scal_prev_read.size();j++) scal_prev_read[j]=scal_present_read[j];
for(size_t j=0;j<scalers.size();j++){
scalers[j]->Clear("");
scalerloc[j]->found=kFALSE;
}
if (fDebugFile) *fDebugFile << "scaler tree ptr "<<fScalerTree<<endl;
if (fScalerTree) fScalerTree->Fill();
return 1;
}
//______________________________________________________________________________
Int_t LHRSScalerEvtHandler::AnalyzeBuffer(Int_t ndata,UInt_t *rdata){
// added by D. Flay to analyze data
UInt_t *P = rdata;
// rdata is actually ASCII, have to convert
std::string word[MAXTEVT];
UInt_t A[MAXTEVT];
// skip the first 4 words because it looks like the first word associated with
// the scalers starts there...
P = P + 4;
// do the conversion
char *pc = (char *)P;
int NWORDS = ParseData(pc,word,A);
UInt_t *p = A;
// UInt_t *pstop = p + *p - 4;
char msg[200];
if(fDebugFile){
*fDebugFile << "========== D FLAY TEST FUNCTION ==========" << std::endl;
*fDebugFile << "**** parsed int array = " << p << ", NWORDS = " << dec << NWORDS << endl;
for(int ii=0;ii<NWORDS;ii++){
sprintf(msg," word index i = %03d, word = %s, int = %u, hex = %02x",ii,word[ii].c_str(),p[ii],p[ii]);
*fDebugFile << msg << endl;
}
}
// if(fDebugFile){
// *fDebugFile << "--- Increment through pointer ---" << std::endl;
// *fDebugFile << "start addr = " << p << std::endl;
// *fDebugFile << "end addr = " << pstop << std::endl;
// }
// int NS = scalers.size();
// int k=0;
// while(p<pstop && k < ndata){
// if(fDebugFile){
// *fDebugFile << " ptr addr = " << p << std::endl;
// }
// // loop over scalers
// for(int j=0;j<NS;j++){
// if(scalerloc[j]->found) continue;
//
// }
// p++; // increment pointer
// k++;
// }
if(fDebugFile) *fDebugFile << "========== END D FLAY TEST FUNCTION ==========" << std::endl;
return 0;
}
//______________________________________________________________________________
THaAnalysisObject::EStatus LHRSScalerEvtHandler::Init(const TDatime& date)
{
ReadDatabase(date);
const int LEN = 200;
char cbuf[LEN];
fStatus = kOK;
fNormIdx = -1;
// std::cout << "[LHRSScalerEventHandler::Init]: Initializing " << fName << "..." << std::endl;
eventtypes.push_back(140); // what events to look for
TString dfile;
dfile = fName + "scaler.txt";
// Parse the map file which defines what scalers exist and the global variables.
TString sname0 = "Scalevt";
TString sname;
sname = fName+sname0;
FILE *fi = Podd::OpenDBFile(sname.Data(), date);
if ( !fi ) {
cout << "Cannot find db file for "<<fName<<" (file = " << sname << ") scaler event handler"<<endl;
return kFileError;
}
string::size_type minus1 = string::npos;
string::size_type pos1;
const string scomment = "#";
const string svariable = "variable";
const string smap = "map";
vector<string> dbline;
while( fgets(cbuf, LEN, fi) != NULL) {
std::string sinput(cbuf);
if (fDebugFile) *fDebugFile << "string input "<<sinput<<endl;
dbline = Podd::vsplit(sinput);
if (dbline.size() > 0) {
pos1 = FindNoCase(dbline[0],scomment);
if (pos1 != minus1) continue;
pos1 = FindNoCase(dbline[0],svariable);
if (pos1 != minus1 && dbline.size()>4) {
string sdesc = "";
for (UInt_t j=5; j<dbline.size(); j++) sdesc = sdesc+" "+dbline[j];
Int_t islot = atoi(dbline[1].c_str());
Int_t ichan = atoi(dbline[2].c_str());
Int_t ikind = atoi(dbline[3].c_str());
if (fDebugFile)
*fDebugFile << "add var "<<dbline[1]<<" desc = "<<sdesc<<" islot= "<<islot<<" "<<ichan<<" "<<ikind<<endl;
TString tsname(dbline[4].c_str());
TString tsdesc(sdesc.c_str());
AddVars(tsname,tsdesc,islot,ichan,ikind);
}
pos1 = FindNoCase(dbline[0],smap);
if (pos1 != minus1 && dbline.size()>6) {
Int_t imodel, icrate, islot, inorm;
UInt_t header, mask;
char cdum[20];
sscanf(sinput.c_str(),"%s %d %d %d %x %x %d \n",cdum,&imodel,&icrate,&islot, &header, &mask, &inorm);
if (fNormSlot >= 0 && fNormSlot != inorm) cout << "LHRSScalerEvtHandler:: WARN: contradictory norm slot "<<inorm<<endl;
fNormSlot = inorm; // slot number used for normalization. This variable is not used but is checked.
Int_t clkchan = -1;
Double_t clkfreq = 1;
if (dbline.size()>8) {
clkchan = atoi(dbline[7].c_str());
clkfreq = 1.0*atoi(dbline[8].c_str());
// save to the class's private variables
fClockChan = clkchan;
fClockFreq = clkfreq;
}
if (fDebugFile) {
*fDebugFile << "map line "<<dec<<imodel<<" "<<icrate<<" "<<islot<<endl;
*fDebugFile <<" header 0x"<<hex<<header<<" 0x"<<mask<<dec<<" "<<inorm<<" "<<clkchan<<" "<<clkfreq<<endl;
}
switch (imodel) {
case 560:
scalers.push_back(new Scaler560(icrate, islot));
break;
case 1151:
scalers.push_back(new Scaler1151(icrate, islot));
break;
case 3800:
scalers.push_back(new Scaler3800(icrate, islot));
break;
case 3801:
scalers.push_back(new Scaler3801(icrate, islot));
break;
default:
std::cout << "LHRSScalerEvtHandler:: ERROR: Invalid model " << imodel << std::endl;
}
if (scalers.size() > 0) {
UInt_t idx = scalers.size()-1;
scalers[idx]->SetHeader(header, mask);
// The normalization slot has the clock in it, so we automatically recognize it.
// fNormIdx is the index in scaler[] and
// fNormSlot is the slot#, checked for consistency
if (clkchan >= 0) {
int clk_rc = scalers[idx]->SetClock(defaultDT, clkchan, clkfreq);
fNormIdx = idx;
if (islot != fNormSlot) cout << "LHRSScalerEvtHandler:: WARN: contradictory norm slot ! "<<islot<<endl;
if (fDebugFile) *fDebugFile <<"Setting scaler clock: dt = " << defaultDT <<", channel = "<<clkchan<<", freq = "<<clkfreq<<", fNormIdx = "<<fNormIdx<<", fNormSlot = "<<fNormSlot<<", slot = "<<islot<<", SetClock return value = "<<clk_rc<<endl;
}
}
}
}
}
// need to do LoadNormScaler after scalers created and if fNormIdx found.
Int_t nscalers = static_cast<Int_t>(scalers.size());
if ( fNormIdx >= 0 && fNormIdx < nscalers ) {
for (Int_t i = 0; i < nscalers; i++) {
if (i==fNormIdx) continue;
scalers[i]->LoadNormScaler(scalers[fNormIdx]);
if(fDebugFile) *fDebugFile << "==> Scaler " << i << ": Loaded normalization scaler ptr = " << scalers[fNormIdx] << std::endl;
}
}
#ifdef HARDCODED
// This code is superseded by the parsing of a map file above. It's another way ...
if (fName == "Left") {
AddVars("TSbcmu1", "BCM x1 counts", 1, 4, ICOUNT);
AddVars("TSbcmu1r","BCM x1 rate", 1, 4, IRATE);
AddVars("TSbcmu3", "BCM u3 counts", 1, 5, ICOUNT);
AddVars("TSbcmu3r", "BCM u3 rate", 1, 5, IRATE);
} else {
AddVars("TSbcmu1", "BCM x1 counts", 0, 4, ICOUNT);
AddVars("TSbcmu1r","BCM x1 rate", 0, 4, IRATE);
AddVars("TSbcmu3", "BCM u3 counts", 0, 5, ICOUNT);
AddVars("TSbcmu3r", "BCM u3 rate", 0, 5, IRATE);
}
#endif
DefVars();
#ifdef HARDCODED
// This code is superseded by the parsing of a map file above. It's another way ...
if (fName == "Left") {
scalers.push_back(new Scaler1151(1,0));
scalers.push_back(new Scaler3800(1,1));
scalers.push_back(new Scaler3800(1,2));
scalers.push_back(new Scaler3800(1,3));
scalers[0]->SetHeader(0xabc00000, 0xffff0000);
scalers[1]->SetHeader(0xabc10000, 0xffff0000);
scalers[2]->SetHeader(0xabc20000, 0xffff0000);
scalers[3]->SetHeader(0xabc30000, 0xffff0000);
scalers[0]->LoadNormScaler(scalers[1]);
scalers[1]->SetClock(4, 7, 1024);
scalers[2]->LoadNormScaler(scalers[1]);
scalers[3]->LoadNormScaler(scalers[1]);
} else {
scalers.push_back(new Scaler3800(2,0));
scalers.push_back(new Scaler3800(2,0));
scalers.push_back(new Scaler1151(2,1));
scalers.push_back(new Scaler1151(2,2));
scalers[0]->SetHeader(0xceb00000, 0xffff0000);
scalers[1]->SetHeader(0xceb10000, 0xffff0000);
scalers[2]->SetHeader(0xceb20000, 0xffff0000);
scalers[3]->SetHeader(0xceb30000, 0xffff0000);
scalers[0]->SetClock(4, 7, 1024);
scalers[1]->LoadNormScaler(scalers[0]);
scalers[2]->LoadNormScaler(scalers[0]);
scalers[3]->LoadNormScaler(scalers[0]);
}
#endif
// Verify that the slots are not defined twice
for (UInt_t i1=0; i1 < scalers.size()-1; i1++) {
for (UInt_t i2=i1+1; i2 < scalers.size(); i2++) {
if (scalers[i1]->GetSlot()==scalers[i2]->GetSlot())
cout << "LHRSScalerEvtHandler:: WARN: same slot defined twice"<<endl;
}
}
// Identify indices of scalers[] vector to variables.
for (UInt_t i=0; i < scalers.size(); i++) {
for (UInt_t j = 0; j < scalerloc.size(); j++) {
if (scalerloc[j]->islot==static_cast<UInt_t>(scalers[i]->GetSlot()))
scalerloc[j]->index = i;
}
}
if(fDebugFile) {
*fDebugFile << "LHRSScalerEvtHandler:: Name of scaler bank "<<fName<<endl;
for (UInt_t i=0; i<scalers.size(); i++) {
*fDebugFile << "Scaler # "<<i<<endl;
scalers[i]->SetDebugFile(fDebugFile);
scalers[i]->DebugPrint(fDebugFile);
}
}
for (size_t j=0; j<scalers.size(); j++) {
scalers[j]->Clear("");
scalerloc[j]->found=kFALSE;
}
return kOK;
}
//______________________________________________________________________________
void LHRSScalerEvtHandler::AddVars(TString name, TString desc, Int_t islot,
Int_t ichan, Int_t ikind)
{
// need to add fName here to make it a unique variable. (Left vs Right HRS, for example)
// TString name1 = fName + name;
TString name1 = Form("%s.%s",fName.Data(),name.Data());
TString desc1 = fName + desc;
// We don't yet know the correspondence between index of scalers[] and slots.
// Will put that in later.
ScalerVar *loc = new ScalerVar(name1, desc1, 0, islot, ichan, ikind);
loc->ivar = scalerloc.size(); // ivar will be the pointer to the dvars array.
scalerloc.push_back(loc);
}
//______________________________________________________________________________
void LHRSScalerEvtHandler::DefVars()
{
// called after AddVars has finished being called.
Int_t Nvars = scalerloc.size();
if (Nvars == 0) return;
dvars = new Double_t[Nvars]; // dvars is a member of this class
dvarsFirst = new Double_t[Nvars]; // dvarsFirst is a member of this class
dvars_prev_read = new UInt_t[Nvars]; // dvars_prev_read is a member of this class
memset(dvars, 0, Nvars*sizeof(Double_t));
memset(dvarsFirst, 0, Nvars*sizeof(Double_t));
memset(dvars_prev_read, 0, Nvars*sizeof(UInt_t));
if (gHaVars) {
if(fDebugFile) *fDebugFile << "LHRSScalerEvtHandler:: Have gHaVars "<<gHaVars<<endl;
} else {
cout << "No gHaVars ?! Well, that's a problem !!"<<endl;
return;
}
if(fDebugFile) *fDebugFile << "LHRSScalerEvtHandler:: scalerloc size "<<scalerloc.size()<<endl;
const Int_t* count = 0;
for (UInt_t i = 0; i < scalerloc.size(); i++) {
gHaVars->DefineByType(scalerloc[i]->name.Data(), scalerloc[i]->description.Data(),
&dvars[i], kDouble, count);
}
}
//______________________________________________________________________________
Int_t LHRSScalerEvtHandler::ParseData(char *msg,std::string *word,UInt_t *word_int){
// loop through the message (msg) and convert into data words
// - input: a char array to parse (i.e., scaler data)
// - output: std::string array (word) and int array (word_int)
char data[200],subword[200];
strcpy(data,"");
strcpy(subword,"");
// std::cout << "Message to decode: " << std::endl;
// std::cout << msg << std::endl;
char *pEnd;
std::string myStr;
int j=0;
int length = strlen(msg);
for(int i=0;i<length;i++){
if(msg[i]=='\n'){
// now have a full word
word[j] = data;
// determine if this is the header
for(int k=0;k<3;k++){
sprintf(subword,"%s%c",subword,data[k]);
}
myStr = subword;
if(myStr.compare("abc")==0){
// this is the header
word_int[j] = std::strtoul(data,&pEnd,16);
}else{
// this is the scaler counts
word_int[j] = std::strtoul(data,&pEnd,10);
}
// increment the index on the word array
j++;
// empty the constructed word
strcpy(data,"");
strcpy(subword,"");
}else{
// not a new line, build the word
sprintf(data,"%s%c",data,msg[i]);
}
}
return j; // return the number of words
}
//______________________________________________________________________________
Int_t LHRSScalerEvtHandler::ReadDatabase(const TDatime& date){
char prefix[2];
prefix[0]='g';
prefix[1]='\0';
fNumBCMs = 0;
// #ifdef HALLCPARM
DBRequest list [] = {
{"NumBCMs",&fNumBCMs,kInt,0,1},
{0}
};
TString sname = "db_LeftBCM.dat";
std::cout << "Trying to load database file " << sname << std::endl;
FILE *file = Podd::OpenDBFile(sname.Data(), date);
// FILE* file = OpenFile( date );
if( !file )
return kInitError;
Int_t err = kOK;
if(!err){
err = LoadDB( file, date,list,fPrefix);
}
// DBRequest list[]={
// {"NumBCMs",&fNumBCMs, kInt, 0, 1},
// {0}
// };
// gHcParms->LoadParmValues((DBRequest*)&list, prefix);
std::cout << "[LHRSScalerEvtHandler::ReadDatabase]: Number of BCMs = " << fNumBCMs << std::endl;
if(fNumBCMs>0) {
fBCM_Gain = new Double_t[fNumBCMs];
fBCM_Offset = new Double_t[fNumBCMs];
fBCM_SatOffset = new Double_t[fNumBCMs];
fBCM_SatQuadratic = new Double_t[fNumBCMs];
fBCM_delta_charge = new Double_t[fNumBCMs];
std::string bcm_namelist;
DBRequest list2[]={
{"BCM_Gain" , fBCM_Gain , kDouble, (UInt_t) fNumBCMs },
{"BCM_Offset" , fBCM_Offset , kDouble, (UInt_t) fNumBCMs },
{"BCM_SatQuadratic" , fBCM_SatQuadratic , kDouble, (UInt_t) fNumBCMs, 1 },
{"BCM_SatOffset" , fBCM_SatOffset , kDouble, (UInt_t) fNumBCMs, 1 },
{"BCM_Names" , &bcm_namelist , kString },
{"BCM_Current_threshold" , &fbcm_Current_Threshold , kDouble, 0 , 1 },
{"BCM_Current_threshold_index", &fbcm_Current_Threshold_Index, kInt , 0 , 1 },
{0}
};
fbcm_Current_Threshold = 0.0;
fbcm_Current_Threshold_Index = 0;
for(Int_t i=0;i<fNumBCMs;i++) {
fBCM_SatOffset[i]=0.;
fBCM_SatQuadratic[i]=0.;
}
err = LoadDB(file,date,list2,fPrefix);
// gHcParms->LoadParmValues((DBRequest*)&list2, prefix);