-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathExpandUtils.h
197 lines (169 loc) · 6.96 KB
/
ExpandUtils.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
#pragma once
#include <ATen/Tensor.h>
#include <c10/util/Exception.h>
#include <functional>
#include <sstream>
#include <tuple>
namespace at {
TORCH_API std::vector<int64_t> infer_size(IntArrayRef a, IntArrayRef b);
TORCH_API std::tuple<std::vector<int64_t>, std::vector<int64_t>>
inferExpandGeometry(
IntArrayRef tensor_sizes,
IntArrayRef tensor_strides,
IntArrayRef sizes);
TORCH_API std::vector<int64_t> infer_dense_strides(
IntArrayRef tensor_sizes,
IntArrayRef tensor_strides);
// True if input shapes are expandable
// NOTE: infer_size did a similar check, please keep them sync if change is needed
inline bool are_expandable(IntArrayRef shape1, IntArrayRef shape2) {
size_t ndim1 = shape1.size();
size_t ndim2 = shape2.size();
size_t ndim = ndim1 < ndim2 ? ndim1 : ndim2;
for (int64_t i = ndim - 1; i >= 0; --i) {
if (shape1[--ndim1] == shape2[--ndim2] || shape1[ndim1] == 1 || shape2[ndim2] == 1) {
continue;
}
return false;
}
return true;
}
// avoid copy-construction of Tensor by using a reference_wrapper.
inline void check_defined(std::initializer_list<std::reference_wrapper<const Tensor>> tensors, const char *api_name) {
for (auto& t : tensors) {
if (!t.get().defined()) {
AT_ERROR(api_name, "(...) called with an undefined Tensor");
}
}
}
inline std::tuple<Tensor> expand_inplace(const Tensor &tensor, const Tensor &to_expand) {
if (tensor.sizes().equals(to_expand.sizes())) {
return std::make_tuple(to_expand);
}
return std::make_tuple(to_expand.expand(tensor.sizes(), /*implicit=*/true)); // see [expand implicit]
}
inline std::tuple<Tensor> expand_inplace(const Tensor &tensor, const Tensor &to_expand, const char *api_name) {
check_defined({tensor, to_expand}, api_name);
return expand_inplace(tensor, to_expand);
}
inline std::tuple<Tensor, Tensor> expand_inplace(const Tensor &tensor, const Tensor &to_expand1, const Tensor &to_expand2) {
if (tensor.sizes().equals(to_expand1.sizes()) && tensor.sizes().equals((to_expand2.sizes()))) {
return std::make_tuple(to_expand1, to_expand2);
}
return std::make_tuple(
to_expand1.expand(tensor.sizes(), /*implicit=*/true), // see [expand implicit]
to_expand2.expand(tensor.sizes(), /*implicit=*/true));
}
inline std::tuple<Tensor, Tensor> expand_inplace(const Tensor &tensor, const Tensor &to_expand1, const Tensor &to_expand2,
const char *api_name) {
check_defined({tensor, to_expand1, to_expand2}, api_name);
return expand_inplace(tensor, to_expand1, to_expand2);
}
inline std::tuple<Tensor, Tensor> expand_outplace(const Tensor &to_expand1, const Tensor &to_expand2) {
if (to_expand1.sizes().equals(to_expand2.sizes())) {
return std::make_tuple(to_expand1, to_expand2);
}
auto expanded_size = infer_size(to_expand1.sizes(), to_expand2.sizes());
return std::make_tuple(
to_expand1.expand(expanded_size, /*implicit=*/true), // see [expand implicit]
to_expand2.expand(expanded_size, /*implicit=*/true));
}
inline std::tuple<Tensor, Tensor> expand_outplace(const Tensor &to_expand1, const Tensor &to_expand2, const char *api_name) {
check_defined({to_expand1, to_expand2}, api_name);
return expand_outplace(to_expand1, to_expand2);
}
inline std::tuple<Tensor, Tensor, Tensor> expand_outplace(const Tensor &to_expand1,
const Tensor &to_expand2,
const Tensor &to_expand3) {
if (to_expand1.sizes().equals(to_expand2.sizes()) && to_expand1.sizes().equals(to_expand3.sizes())) {
return std::make_tuple(to_expand1, to_expand2, to_expand3);
}
auto expanded_size12 = infer_size(to_expand1.sizes(), to_expand2.sizes());
auto expanded_size = infer_size(expanded_size12, to_expand3.sizes());
return std::make_tuple(
to_expand1.expand(expanded_size, /*implicit=*/true), // see [expand implicit]
to_expand2.expand(expanded_size, /*implicit=*/true),
to_expand3.expand(expanded_size, /*implicit=*/true));
}
inline std::tuple<Tensor, Tensor, Tensor> expand_outplace(const Tensor &to_expand1,
const Tensor &to_expand2,
const Tensor &to_expand3,
const char *api_name) {
check_defined({to_expand1, to_expand2, to_expand3}, api_name);
return expand_outplace(to_expand1, to_expand2, to_expand3);
}
inline std::tuple<Tensor> expand_size(const Tensor &to_expand, IntArrayRef sizes) {
if(to_expand.sizes().equals(sizes)) {
return std::make_tuple(to_expand);
}
return std::make_tuple(to_expand.expand(sizes, /*implicit=*/true)); // see [expand implicit]
}
inline std::tuple<Tensor> expand_size(const Tensor &to_expand, IntArrayRef sizes, const char *api_name) {
check_defined({to_expand}, api_name);
return expand_size(to_expand, sizes);
}
inline std::vector<Tensor> expand_outplace(TensorList to_expand) {
// expands a list of Tensors; ignores undefined (null) tensors
bool first = true;
std::vector<int64_t> sizes;
for (size_t i = 0; i < to_expand.size(); ++i) {
if (!to_expand[i].defined()) {
continue;
} else if (first) {
sizes = to_expand[i].sizes().vec();
first = false;
} else {
sizes = infer_size(sizes, to_expand[i].sizes());
}
}
std::vector<Tensor> result(to_expand.size());
for (size_t i = 0; i < to_expand.size(); ++i) {
if (!to_expand[i].defined()) {
continue;
} else if (to_expand[i].sizes().equals(sizes)) {
result[i] = to_expand[i];
} else {
result[i] = to_expand[i].expand(sizes, /*implicit=*/true); // see [expand implicit]
}
}
return result;
}
// Sums `tensor` repeatedly to produce a tensor of shape `shape`.
// Precondition: is_expandable_to(shape, tensor.sizes()) must be true
static inline Tensor sum_to(Tensor tensor, const IntArrayRef shape) {
if (shape.size() == 0) {
return tensor.sum();
}
c10::SmallVector<int64_t, 8> reduce_dims;
const at::IntArrayRef sizes = tensor.sizes();
const int64_t leading_dims = sizes.size() - shape.size();
for (int64_t i = 0; i < leading_dims; ++i) {
reduce_dims.push_back(i);
}
for (int64_t i = leading_dims; i < static_cast<int64_t>(sizes.size()); ++i) {
if (shape[i - leading_dims] == 1 && sizes[i] != 1) {
reduce_dims.push_back(i);
}
}
if (!reduce_dims.empty()) {
tensor = tensor.sum(reduce_dims, /*keepdim=*/true);
}
return leading_dims > 0 ? tensor.view(shape) : tensor;
}
// True if `shape` can be broadcasted to `desired`
static inline bool is_expandable_to(IntArrayRef shape, IntArrayRef desired) {
size_t ndim = shape.size();
size_t target_dim = desired.size();
if (ndim > target_dim) {
return false;
}
for (size_t i = 0; i < ndim; i++) {
int64_t size = shape[ndim - i - 1];
int64_t target = desired[target_dim - i - 1];
if (size != target && size != 1) {
return false;
}
}
return true;
}
}