Skip to content

Latest commit

 

History

History
150 lines (124 loc) · 3.55 KB

Lecture5-ForierMethodsProof.md

File metadata and controls

150 lines (124 loc) · 3.55 KB

Mathematical Proof of DFT

[TOC]

FT Different Forms & Euler Formula

Sine-cosine form

$$ f(x)=\sum^\infty_{h=0} \left[a_h \cos\left(2\pi h\frac{x}{N}\right) + b_h \sin\left(2\pi h\frac{x}{N}\right)\right]\\ $$

Amplitude-phase form

$$ f(x)=\frac{A_0}{2} + \sum^N_{h=1}\left( A_h \cos\left(2\pi h \frac{x}{N}-\varphi_h\right) \right) $$

Exponential form

$$ f(x) = \sum^N_{h=-N} c_h e^{i2\pi h \frac{x}{N}} $$

Euler formula

$$ e^{i\theta} = \cos \theta + i\sin\theta\\ \cos\theta=\frac{e^{i\theta} + e^{-i\theta}}{2}\\ \sin \theta=\frac{e^{i\theta} + e^{-i\theta}}{2i} $$

Proof

$\Gamma = 2\pi h \frac{x}{N}$

Sine-cosine form to Amplitude-phase form

考虑 Amplitude (Magnitude) 与 Phrase (Direction) 于 $h$ 时的定义: $$ \begin{cases} A_h = \sqrt{a_h^2 + b_h^2}\ \varphi_h = \tan^{-1}\left(\frac{b_h}{a_h}\right) \end{cases} $$ 则有 $$ \begin{cases} a_h = A_h \cos(\varphi_h)\ b_h = A_h \sin(\varphi_h) \end{cases} $$

带入 Sin-cons form $$ \begin{align} & a_h \cos(\Gamma) + b_h \sin(\Gamma) \ =& A_h \cos(\varphi_h) \cos(\Gamma) + A_h \sin(\varphi_h) \sin(\Gamma) \ =& A_h[\cos(\varphi_h) \cos(\Gamma) + \sin(\varphi_h) \sin(\Gamma)] \end{align} $$ 考虑三角恒等变换 $$ \cos(\alpha-\beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta $$ 则有 $$ \begin{align} & a_h \cos(\Gamma) + b_h \sin(\Gamma) \ =& A_h[\cos(\varphi_h) \cos(\Gamma) + \sin(\varphi_h) \sin(\Gamma)] \ =& A_h[\cos(\varphi_h -\Gamma)] \ =& A_h[\cos(\Gamma-\varphi_h)] \end{align} $$ 考虑完整 Series

  • $h=0$,考虑 Sine-cosine form: $$ \begin{align} f(x)_0 &= a_0\cos(0) + b_0\sin(0) \ &= a_0 \cdot 1 + b_0 \cdot 0 \ &= a_0 \end{align} $$ 而 $A_0 = |a_0|$,看似不成立,但是如考虑公式意义,则成立。

    这是因为在傅里叶级数展开中,对于 $h\geq1$ 的项: $A_h\cos(\Gamma - \varphi_h)$ 的振幅 $A_h$ 实际上是原信号在该频率分量上峰-峰值的一半。

    为了保持一致性,令系数为 $1/2$

  • $h\geq 1$,则有 $$ f(x) = \frac{A_0}{2} + \sum_{h=1}^N A_h \cos(\Gamma - \varphi_h) $$

$$ \begin{align*} \square \end{align*} $$

Sine-cosine form to Exponential form

$$ \begin{align*} \text{Given: } &f(x)=\sum^\infty_{h=0} [a_h \cos(\Gamma) + b_h \sin(\Gamma)]\\ &e^{i\theta} = \cos \theta + i\sin\theta\\ &\cos\theta=\frac{e^{i\theta} + e^{-i\theta}}{2}\\ &\sin\theta=\frac{e^{i\theta} - e^{-i\theta}}{2i}\\ \text{Want: } &f(x) = \sum^N_{h=-N} c_h e^{i\Gamma} \end{align*} $$

应用欧拉公式,有: $$ \begin{align} f(x) &=\sum^\infty_{h=0} [a_h \cos(\Gamma) + b_h \sin(\Gamma)]\ &= \sum_{h=0}^{\infty} \left[a_h\left(\frac{e^{i\Gamma} + e^{-i\Gamma}}{2}\right) + b_h\left(\frac{e^{i\Gamma} - e^{-i\Gamma}}{2i}\right)\right] \ &= \sum_{h=0}^{\infty} \left[\frac{a_h}{2}\left(e^{i\Gamma} + e^{-i\Gamma}\right) + \frac{b_h}{2i}\left(e^{i\Gamma} - e^{-i\Gamma}\right)\right] \ &= \sum_{h=0}^{\infty} \left[\left(\frac{a_h}{2} + \frac{b_h}{2i}\right)e^{i\Gamma} + \left(\frac{a_h}{2} - \frac{b_h}{2i}\right)e^{-i\Gamma}\right] \end{align} $$ 定义: $$ \begin{cases} c_{h} = \frac{a_h}{2} + \frac{b_h}{2i}\ c_{-h} = \frac{a_h}{2} - \frac{b_h}{2i} \end{cases} $$

这里的 $h$$-h$ 理解为下标,而不应该理解为值。

则有 $$ \begin{align} f(x) &= \sum_{h=0}^{\infty} \left[\left(\frac{a_h}{2} + \frac{b_h}{2i}\right)e^{i\Gamma} + \left(\frac{a_h}{2} - \frac{b_h}{2i}\right)e^{-i\Gamma}\right] \ &= \sum_{h=0}^{\infty} \left[c_h e^{i\Gamma} + c_{-h} e^{-i\Gamma}\right] \ &= \sum_{h=-\infty}^{\infty} c_h e^{i\Gamma} \end{align} $$

$$ \begin{align*} \square \end{align*} $$