N2: Mathematical Foundations of Neural Networks
$$
y=kx+b (k, b \text{ are constants}, k\neq 0)
$$
$k$ : slope (斜率) of the line.
$b$ : intercept (截距) of the line.
$$
y=kx^2+bx+c (k, b, c \text{ are constants}, k\neq 0)
$$
Heaviside Step Function/单位阶跃函数
$$
u(x)=\begin{cases}
0 & \text{if } x<0 \\
1 & \text{if } x\geq 0
\end{cases}
$$
Sigmoid Function/Sigmoid 函数
$$
\sigma(x)=\frac{1}{1+e^{-x}}
$$
Probability Density Function for Normal Distribution/正态分布的概率密度函数
$$
f(x)=\cfrac{1}{\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}
$$
$\mu$ : mean/expected value/期待值/平均值
$\sigma$ : standard deviation/标准差
$$
\sum^n_{k=1}(a_k+b_k)=\sum^n_{k=1}a_k+\sum^n_{k=1}b_k\\
\sum^n_{k=1}ca_k=c\sum^n_{k=1}a_k (c \text{ is a constant})
$$
$$
\text{len}(\vec{v})=\sqrt{\sum^n_{k=1}v_k^2}
$$
$$
\vec{a}\cdot \vec{b}=|\vec{a}||\vec{b}|\cos\theta
$$
Or
$$
\vec{a}\cdot \vec{b}=a_1b_1+a_2b_2+a_3b_3+\cdots+a_Nb_N
$$
Cauchy–Schwarz Inequality
$$
-|\vec{a}||\vec{b}|
\leq
\vec{a}\cdot\vec{b}
\leq
|\vec{a}||\vec{b}|
$$
$$
-|\vec{a}||\vec{b}|
\leq
|\vec{a}||\vec{b}|\cos\theta
\leq
|\vec{a}||\vec{b}|
$$
When 2 Vectors
Inner Product
Opposite Directions
Minimum
Not Parallel
Middle
Same Direction
Maximum
// TO BE CONTINUED: pp. 61, section 2-5