单词 | 释意 |
---|---|
Argument | 自变量 |
Proposition | 命题 |
Premise | 前提 |
Conclusion | 结论 |
iff | if and only if |
Hypotheses | 假说 |
Take a symbolic approach
Advantages:
- Unambiguous
- More concise
- 原子命题(atomic proposition)
-
$\top$ true -
$\bot$ false
-
- 逻辑连接词(connectives)
- conjunction/合取
$\wedge$ : and - disjunction/析取
$\vee$ : or - implication/蕴含
$\to$ : implies/if ... then ... - negation /否定
$\neg$ : not - Arbitrary /任意
$\forall$ : for all objects, 对于所有对象
- conjunction/合取
a ranges over atomic propositions
atomic propositions are formulas
没有子公式的公式
Aka "inclusive or"
Note: Or in English is often exclusive or
Decreasing:
Right associative use parentheses for clarity
Connective itself + what it connects
Main connective: a formula
- the connective whose scope is the whole formula
- Parse tree's root node
Example:
$p\to q, \neg q \vdash \neg p$
- Formal Language
- For representing propositions, arguments
(We use propositional logic) - Proof Theory
- For representing propositions, arguments
- introduction 用于定义符号
- elimination 用于消去符号
Attention:
Tip: We don't have to make use of A in which case we can just omit it: $$ \cfrac{B}{A \to B}{[\to I]} $$
Left: $$ \cfrac{A}{A \vee B}{[\vee I_L]} $$ Right: $$ \cfrac{A}{B \vee A}{[\vee I_R]} $$
Left: $$ \cfrac{A \wedge B}{A}{[\wedge E_L]} $$ Right: