Skip to content

Latest commit

 

History

History
203 lines (135 loc) · 3.3 KB

Week2.md

File metadata and controls

203 lines (135 loc) · 3.3 KB

Propositional Logic/命题逻辑

07/10/2021 KevinZonda

Vocabulary/词汇表

单词 释意
Argument 自变量
Proposition 命题
Premise 前提
Conclusion 结论
iff if and only if
Hypotheses 假说

Formalise Logical Statements/形式化逻辑表达式

Take a symbolic approach

Advantages:

  • Unambiguous
  • More concise

Symbols/符号

  • 原子命题(atomic proposition)
    • $\top$ true
    • $\bot$ false
  • 逻辑连接词(connectives)
    • conjunction/合取 $\wedge$: and
    • disjunction/析取 $\vee$: or
    • implication/蕴含 $\to$: implies/if ... then ...
    • negation /否定 $\neg$: not
    • Arbitrary /任意 $\forall$: for all objects, 对于所有对象

Atomic Propositions/原子命题

$$ P ::= a \mid P \vee P \mid P \wedge P \mid P \to P \mid \neg P $$

a ranges over atomic propositions

atomic propositions are formulas

没有子公式的公式

Connectives/连接词

Disjunction/析取式

Aka "inclusive or"

Note: Or in English is often exclusive or

Precedence/优先级

Decreasing: $\neg, \wedge, \vee, \to$

Associativity/结合

Right associative use parentheses for clarity

Scope/作用域

Connective itself + what it connects

Main connective: a formula

  • the connective whose scope is the whole formula
  • Parse tree's root node

Sequent/相继式

$$ \Gamma\vdash\Sigma $$

Example:

  • $p\to q, \neg q \vdash \neg p$

$\vdash$, aka 十字转门/turnstile or T型符号/tee.

Natural Deduction/自然演绎

Formal Proof

  • Formal Language
    • For representing propositions, arguments
      (We use propositional logic)
    • Proof Theory

Inference Rules/推理规则

Types/种类

  • introduction 用于定义符号
  • elimination 用于消去符号

Implication-Elimination

$$ \cfrac{A \qquad A \to B}{B}{[\to E]} $$

False-Elimination

$$ \cfrac{\bot}{A}{[\bot E]} $$

True-Introduction

$$ \cfrac{}{\top}{[\top I]} $$

Negation-Elimination

$$ \cfrac{A \qquad \neg A}{\bot}{[\to E]} $$

Attention: $\neg A$ is defined as $\neg A = A \to \bot$ , so this elimination is just to demonstrate that $$ \cfrac{A \qquad A \to \bot}{\bot}{[\to E]} $$ It uses Implication-Elimination, so its name is $\to E$.

Natural Deduction

Discharging/Cancellation

Implication-Introduction

$$ \cfrac{\begin{matrix}\cfrac{}{A}1\...\B\\end{matrix}}{A\to B}{1\ [\to I]} $$

Tip: We don't have to make use of A in which case we can just omit it: $$ \cfrac{B}{A \to B}{[\to I]} $$

Negation

Introduction

$$ \cfrac{\begin{matrix}\cfrac{}{A}1\...\\bot\\end{matrix}}{A\to\bot}{1\ [\neg I]} $$

Elimination

$$ \cfrac{A\qquad \neg A}{\bot}{[\neg E]} $$

Or

Introduction

Left: $$ \cfrac{A}{A \vee B}{[\vee I_L]} $$ Right: $$ \cfrac{A}{B \vee A}{[\vee I_R]} $$

Elimination

$$ \cfrac{A\vee B \qquad A\to C \qquad B \to C}{C}{[\vee E]} $$

And

Introduction

$$ \cfrac{A \qquad B}{A \wedge B}{[\wedge I]} $$

Elimination

Left: $$ \cfrac{A \wedge B}{A}{[\wedge E_L]} $$ Right:

$$ \cfrac{A \wedge B}{B}{[\wedge E_R]} $$