Skip to content

Latest commit

 

History

History
92 lines (67 loc) · 4.35 KB

Week3.md

File metadata and controls

92 lines (67 loc) · 4.35 KB

Propositional Logic - Sequent Calculus/命题逻辑 - 相继式演算

15/10/2021 KevinZonda

Definition

Use left/right rules instead of elimination/introduction rules.

Left is premises right is conclusion.

Use Γ and for lists of formulas separated by commas.

We will eliminate connectives from the premises (the left) and introduce connectives from the conclusion (the right).

Rules

Basic

Natural Deduction Sequent Calculus
$\cfrac{A \qquad A\to B}{B}{[\to E]}$ $\cfrac{\Gamma \vdash A \qquad \Gamma, B \vdash C}{\Gamma, A \to B \vdash C}{[\to L]}$
$\cfrac{\begin{matrix}\cfrac{}{A}1\...\B\\end{matrix}}{A\to B}{1\ [\to I]}$ $\cfrac{\Gamma, A \vdash B}{\Gamma \vdash A \to B}{[\to R]}$
Natural Deduction Sequent Calculus
$\cfrac{A \qquad \neg A}{\bot}{[\to E]}$ $\cfrac{\Gamma, A \vdash \bot}{\Gamma \vdash \neg A}{[\neg R]}$
Natural Deduction Sequent Calculus
$\cfrac{A}{A \vee B}{[\vee I_L]}$ $\cfrac{\Gamma \vdash A}{\Gamma \vdash A \vee B}{[\vee R_1]}$
$\cfrac{A}{B \vee A}{[\vee I_R]}$ $\cfrac{\Gamma \vdash A}{\Gamma \vdash B \vee A}{[\vee R_2]}$
$\cfrac{A\vee B \qquad A\to C \qquad B \to C}{C}{[\vee E]}$ $\cfrac{\Gamma, A \vdash C \qquad \Gamma, B \vdash C}{\Gamma, A \vee B\vdash C}{[\vee L]}$
Natural Deduction Sequent Calculus
$\cfrac{A \qquad B}{A \wedge B}{[\wedge I]}$ $\cfrac{\Gamma \vdash A \qquad \Gamma\vdash B}{\Gamma \vdash A \wedge B }{[\wedge R]}$
$\cfrac{A \wedge B}{B}{[\wedge E_R]}$
$\cfrac{\Gamma, A, B \vdash C}{\Gamma, A \wedge B \vdash C }{[\wedge L]}$
$\cfrac{A \wedge B}{A}{[\wedge E_L]}$

Identity and Structural Rules

Identity

$$ \cfrac{}{A \vdash A}{[Id]} $$

Exchange

$$ \cfrac{\Gamma, B, A, \Delta \vdash C}{\Gamma, A, B. \Delta \vdash C}[X] $$

Weakening

$$ \cfrac{\Gamma \vdash B}{\Gamma, A \vdash B}{[W]} $$

Contraction

$$ \cfrac{\Gamma, A, A \vdash B}{\Gamma, A \vdash B}{[C]} $$

Cut

$$ \cfrac{\Gamma \vdash B \qquad \Gamma, B \vdash A}{\Gamma \vdash B}{[Cut]} $$

Fomulas