Propositional Logic - Sequent Calculus/命题逻辑 - 相继式演算
15/10/2021
KevinZonda
Use left/right rules instead of elimination/introduction rules.
Left is premises right is conclusion.
Use Γ
and ∆
for lists of formulas separated by commas.
We will eliminate connectives from the premises (the left )
and introduce connectives from the conclusion (the right ).
Natural Deduction
Sequent Calculus
$\cfrac{A \qquad A\to B}{B}{[\to E]}$
$\cfrac{\Gamma \vdash A \qquad \Gamma, B \vdash C}{\Gamma, A \to B \vdash C}{[\to L]}$
$\cfrac{\begin{matrix}\cfrac{}{A}1\...\B\\end{matrix}}{A\to B}{1\ [\to I]}$
$\cfrac{\Gamma, A \vdash B}{\Gamma \vdash A \to B}{[\to R]}$
Natural Deduction
Sequent Calculus
$\cfrac{A \qquad \neg A}{\bot}{[\to E]}$
$\cfrac{\Gamma, A \vdash \bot}{\Gamma \vdash \neg A}{[\neg R]}$
Natural Deduction
Sequent Calculus
$\cfrac{A}{A \vee B}{[\vee I_L]}$
$\cfrac{\Gamma \vdash A}{\Gamma \vdash A \vee B}{[\vee R_1]}$
$\cfrac{A}{B \vee A}{[\vee I_R]}$
$\cfrac{\Gamma \vdash A}{\Gamma \vdash B \vee A}{[\vee R_2]}$
$\cfrac{A\vee B \qquad A\to C \qquad B \to C}{C}{[\vee E]}$
$\cfrac{\Gamma, A \vdash C \qquad \Gamma, B \vdash C}{\Gamma, A \vee B\vdash C}{[\vee L]}$
Natural Deduction
Sequent Calculus
$\cfrac{A \qquad B}{A \wedge B}{[\wedge I]}$
$\cfrac{\Gamma \vdash A \qquad \Gamma\vdash B}{\Gamma \vdash A \wedge B }{[\wedge R]}$
$\cfrac{A \wedge B}{B}{[\wedge E_R]}$
$\cfrac{\Gamma, A, B \vdash C}{\Gamma, A \wedge B \vdash C }{[\wedge L]}$
$\cfrac{A \wedge B}{A}{[\wedge E_L]}$
Identity and Structural Rules
$$
\cfrac{}{A \vdash A}{[Id]}
$$
$$
\cfrac{\Gamma, B, A, \Delta \vdash C}{\Gamma, A, B. \Delta \vdash C}[X]
$$
$$
\cfrac{\Gamma \vdash B}{\Gamma, A \vdash B}{[W]}
$$
$$
\cfrac{\Gamma, A, A \vdash B}{\Gamma, A \vdash B}{[C]}
$$
$$
\cfrac{\Gamma \vdash B \qquad \Gamma, B \vdash A}{\Gamma \vdash B}{[Cut]}
$$