Skip to content

Latest commit

 

History

History
213 lines (168 loc) · 9.22 KB

Week4.md

File metadata and controls

213 lines (168 loc) · 9.22 KB

Propositional Logic - Classical Reasoning/命题逻辑 - 经典逻辑

24/10/2021 KevinZonda

Basic Laws

Law of Excluded Middle (LEM)

For each A we can always prove $A$ or $\neg A$

To make it simple $\vdash A \vee \neg A$

$$ \cfrac{}{A \vee \neg A}{[LEM]} $$

Double Negation Elimination (DNE)

$\neg \neg A \vdash A$

Equivalently, $(\neg A)\to \bot \vdash A$

$$ \cfrac{\neg\neg A}{A}{[DNE]} $$

proof by contradiction(构造性证明)

Classical reasoning allows using these 2 rules.

We should use them by constructive(构造性) or intuitionistic(直觉) logic.

Some proof

LEM implies DNE

Assuming $A\vee \neg A$, infer $\neg\neg A \vdash A$

DNE implies LME

Assuming $\neg\neg A \vdash A$, infer $\vdash A\vee \neg A$

Contrapositive/换质位推理

Given an implication $A \to B$, the formula $\neg B \to\neg A$ is called the contrapositive.

Proof: $A\to B \vdash \neg B \to \neg A$

Proof: $\neg B \to \neg A \vdash A\to B$

In Sequent Calculus

$$ \cfrac{} {\Gamma\vdash A \vee\neg A}{[LEM]} $$

$$ \cfrac {\Gamma\vdash\neg\neg A} {\Gamma \vdash A} {[DNE]} $$

Classical vs Intuitionistic

Intuitionistic Classic
$\cfrac{\Gamma\vdash A\qquad\Gamma, B\vdash C}{\Gamma, A \to B \vdash C}[\to E]$ $\cfrac{\Gamma\vdash A, \Delta\qquad\Gamma, B\vdash \Delta'}{\Gamma, A \to B \vdash \Delta, \Delta'}[\to L]$
$\cfrac{\Gamma, A \vdash B}{\Gamma\vdash A \to B}{[\to R]}$ $\cfrac{\Gamma, A \vdash B, \Delta}{\Gamma\vdash A \to B, \Delta}{[\to R]}$
$\cfrac{\Gamma\vdash B \qquad \Gamma, B\vdash A}{\Gamma\vdash A}{[Cut]}$ $\cfrac{\Gamma_1\vdash B,\Delta_1 \qquad \Gamma_2, B\vdash \Delta_2}{\Gamma_1, \Gamma_2\vdash \Delta_1, \Delta_2}{[Cut]}$
$\cfrac{\Gamma\vdash A \qquad \Gamma\vdash B}{\Gamma\vdash A\wedge B}{[\wedge R]}$ $\cfrac{\Gamma_1\vdash A,\Delta_1 \qquad \Gamma_2\vdash B, \Delta_2}{\Gamma_1, \Gamma_2\vdash A\wedge B, \Delta_1, \Delta_2}{[\wedge R]}$
$\cfrac{\Gamma, A\vdash C \qquad \Gamma, B\vdash C}{\Gamma, A \vee B \vdash C}{[\vee L]}$ $\cfrac{\Gamma_1, A\vdash \Delta_1 \qquad \Gamma_2, B\vdash \Delta_2}{\Gamma_1, \Gamma_2, A \vee B \vdash \Delta_1, \Delta_2}{[\vee L]}$
$\cfrac{\Gamma\vdash A}{\Gamma, \neg A \vdash B}{[\neg L]}$ $\cfrac{\Gamma\vdash A, \Delta}{\Gamma, \neg A \vdash \Delta}{[\neg L]}$
$\cfrac{\Gamma, A\vdash \bot}{\Gamma\vdash \neg A}{[\neg R]}$ $\cfrac{\Gamma, A\vdash \Delta}{\Gamma\vdash \neg A, \Delta}{[\neg R]}$
$\cfrac{\Gamma\vdash A}{\Gamma\vdash A \vee B}{[\vee R_L]}$
$\cfrac{\Gamma\vdash A, B, \Delta}{\Gamma\vdash A \vee B}{[\vee R]}$
$\cfrac{\Gamma\vdash A}{\Gamma\vdash B \vee A}{[\vee R_2]}$

Other Structural Formulas

Right Exchange

$$ \cfrac{\Gamma\vdash\Delta_1, B, A, \Delta_2}{\Gamma\vdash\Delta_1, A, B, \Delta_2}{[X_R]} $$

Right Weakening

$$ \cfrac{\Gamma\vdash\Delta}{\Gamma\vdash A, \Delta}{[W_R]} $$

Right Contraction

$$ \cfrac{\Gamma\vdash A, A, \Delta}{\Gamma\vdash A, \Delta}{[C_R]} $$

Rules of the Classical Sequent Calculus