Propositional Logic - Classical Reasoning/命题逻辑 - 经典逻辑
24/10/2021
KevinZonda
Law of Excluded Middle (LEM)
For each A we can always prove $A$ or $\neg A$
To make it simple $\vdash A \vee \neg A$
$$
\cfrac{}{A \vee \neg A}{[LEM]}
$$
Double Negation Elimination (DNE)
$\neg \neg A \vdash A$
Equivalently, $(\neg A)\to \bot \vdash A$
$$
\cfrac{\neg\neg A}{A}{[DNE]}
$$
proof by contradiction(构造性证明)
Classical reasoning allows using these 2 rules.
We should use them by constructive(构造性) or intuitionistic(直觉) logic.
Assuming $A\vee \neg A$ , infer $\neg\neg A \vdash A$
Assuming $\neg\neg A \vdash A$ , infer $\vdash A\vee \neg A$
Given an implication $A \to B$ , the formula $\neg B \to\neg A$ is called the contrapositive .
Proof: $A\to B \vdash \neg B \to \neg A$
Proof: $\neg B \to \neg A \vdash A\to B$
$$
\cfrac{}
{\Gamma\vdash A \vee\neg A}{[LEM]}
$$
$$
\cfrac
{\Gamma\vdash\neg\neg A}
{\Gamma \vdash A}
{[DNE]}
$$
Classical vs Intuitionistic
Intuitionistic
Classic
$\cfrac{\Gamma\vdash A\qquad\Gamma, B\vdash C}{\Gamma, A \to B \vdash C}[\to E]$
$\cfrac{\Gamma\vdash A, \Delta\qquad\Gamma, B\vdash \Delta'}{\Gamma, A \to B \vdash \Delta, \Delta'}[\to L]$
$\cfrac{\Gamma, A \vdash B}{\Gamma\vdash A \to B}{[\to R]}$
$\cfrac{\Gamma, A \vdash B, \Delta}{\Gamma\vdash A \to B, \Delta}{[\to R]}$
$\cfrac{\Gamma\vdash B \qquad \Gamma, B\vdash A}{\Gamma\vdash A}{[Cut]}$
$\cfrac{\Gamma_1\vdash B,\Delta_1 \qquad \Gamma_2, B\vdash \Delta_2}{\Gamma_1, \Gamma_2\vdash \Delta_1, \Delta_2}{[Cut]}$
$\cfrac{\Gamma\vdash A \qquad \Gamma\vdash B}{\Gamma\vdash A\wedge B}{[\wedge R]}$
$\cfrac{\Gamma_1\vdash A,\Delta_1 \qquad \Gamma_2\vdash B, \Delta_2}{\Gamma_1, \Gamma_2\vdash A\wedge B, \Delta_1, \Delta_2}{[\wedge R]}$
$\cfrac{\Gamma, A\vdash C \qquad \Gamma, B\vdash C}{\Gamma, A \vee B \vdash C}{[\vee L]}$
$\cfrac{\Gamma_1, A\vdash \Delta_1 \qquad \Gamma_2, B\vdash \Delta_2}{\Gamma_1, \Gamma_2, A \vee B \vdash \Delta_1, \Delta_2}{[\vee L]}$
$\cfrac{\Gamma\vdash A}{\Gamma, \neg A \vdash B}{[\neg L]}$
$\cfrac{\Gamma\vdash A, \Delta}{\Gamma, \neg A \vdash \Delta}{[\neg L]}$
$\cfrac{\Gamma, A\vdash \bot}{\Gamma\vdash \neg A}{[\neg R]}$
$\cfrac{\Gamma, A\vdash \Delta}{\Gamma\vdash \neg A, \Delta}{[\neg R]}$
$\cfrac{\Gamma\vdash A}{\Gamma\vdash A \vee B}{[\vee R_L]}$
$\cfrac{\Gamma\vdash A, B, \Delta}{\Gamma\vdash A \vee B}{[\vee R]}$
$\cfrac{\Gamma\vdash A}{\Gamma\vdash B \vee A}{[\vee R_2]}$
Other Structural Formulas
$$
\cfrac{\Gamma\vdash\Delta_1, B, A, \Delta_2}{\Gamma\vdash\Delta_1, A, B, \Delta_2}{[X_R]}
$$
$$
\cfrac{\Gamma\vdash\Delta}{\Gamma\vdash A, \Delta}{[W_R]}
$$
$$
\cfrac{\Gamma\vdash A, A, \Delta}{\Gamma\vdash A, \Delta}{[C_R]}
$$
Rules of the Classical Sequent Calculus