-
$A$ and$B$ have the same semantics -
$\phi(A)=T$ if and only if$\phi(B)=T$ -
$A$ is provable if and only if$B$ is provable - this is called a "bi-implication"
- read as "$A$ if and only if
$B$ "
- De Morgan's Law (I):
$\neg (A \vee B) \leftrightarrow (\neg A \wedge \neg B)$ - De Morgan's Law (II):
$\neg (A \wedge B) \leftrightarrow (\neg A \vee \neg B)$ - Implication Elimination:
$(A \to B) \leftrightarrow (\neg A \vee B)$
- Literal, 文字:是原子公式(atom)以及其否定($\neg A$)
- Clause, 子句
$(A \vee B \vee C)\wedge (D \vee X) \wedge (\neg A)$ - 子句是文字的析取($\vee$)
- 每个子句由合取($\wedge$)连接
$(A \wedge B \wedge C)\vee (D \wedge X) \vee (\neg A)$ - 子句是文字的合取($\wedge$)
- 每个子句由析取($\vee$)连接
需要注意的是一个子句可以被认定为CNF与DNF。例如
Theorem: Every proposition can be expressed in DNF
Example: express
- Find all
$T$ in result- Row 1 is
$P\wedge Q$ - Row 3 is
$\neg P \wedge Q$
- Row 1 is
- Use OR (
$\vee$ ) to connect - Final is
$(P \wedge Q) \vee (\neg P \wedge Q)$
Theorem: Every proposition can be expressed in CNF
Example: express
- Find all
$F$ in result- Row 2 is
$P\wedge \neg Q$ - Row 4 is
$\neg P \wedge \neg Q$
- Row 2 is
- Use AND (
$\wedge$ ) to connect their negations - We get
$\neg (P\wedge \neg Q) \wedge \neg (\neg P \wedge \neg Q)$ - Final is
$(\neg P \vee Q) \wedge (P \wedge Q)$