20/10/2021
KevinZonda
{1, 2, 4, 2048} ⊆ N
^ is a subset/part of
$$
\left{\right} \subseteq A\ \empty
$$
{} and ∅ are both empty set.
$$
B = \left{x \in A \mid x \text{ satisfies } c\right}\
B \subseteq A \text{ iff } \forall x. x \in B \Rightarrow x \in A\
A = B \text{ iff } \forall x. x \in B \Leftrightarrow x \in A\
\qquad\text{ iff } A \subseteq B \wedge B \subseteq A
$$
$$
B_1, B_2 \subseteq A\\
B_1 \cap B_2 = \left{ x \in A \mid x \in B_1 \wedge x \in B_2 \right}\\
B \cap \empty = \empty\\
B \cap A = B \\
B_1 \cap B_2 = B_2 \cap B_1\\
B_1 \cap (B_2 \cap B_3)=(B_1 \cap B_2) \cap B_3
$$
$$
B \subseteq A\\
\overline{B} = \left{ x \in A \mid x \notin B\right}
$$
$$
B_1, B_2 \subseteq A\\
B_1 \backslash B_2 = \left{ x \in A \mid x \in B_1 \wedge x \notin B_2 \right} \\
B \backslash \empty = B \\
B \backslash A = \empty \\
B_1 \backslash B_2 = B_1 \backslash (B_2 \cap B_2)
$$
原集合中所有的子集(包括全集和空集)构成的集族
$$
\mathcal{P}\left{a, b, c\right} = \left{∅, \left{a\right}, \left{b\right}, \left{c\right}, \left{a, b\right}, \left{a, c\right}, \left{b, c\right}, \left{a, b, c\right}\right}
$$
Theorem: The carinality of PA is strictly larger than the card. of A.
$$
|N| < |R| < |PR|
$$
Propositional logic and Boolean algebras
$$
A \cap (B \cup C) = (A \cap B) \cup (A \cap C)\\
A \cup (B \cap C) = (A \cup B) \cap (A \cup C)
$$
$$
\overline{A \cup B} = \overline{A} \cap \overline{B}\\
\overline{A \cap B} = \overline{A} \cup \overline{B}\\
$$
Set
Boolean Algebra
∪
∨
∩
∧
_
¬
∅
false, ff, ⊥
X
true, tt, T
Boolean Algebra: A set of elements. Operations: ∨, ∧, ¬; Constants: T, ⊥. Satisfies the laws above.
false ∨ true = true (by Annihilation)
¬ False = ¬ false ∨ true (neutral element)
= true (complement)
C means carry (进位).