Skip to content

Latest commit

 

History

History
322 lines (250 loc) · 4.83 KB

Week9.md

File metadata and controls

322 lines (250 loc) · 4.83 KB

Linear Algebra: Analytic Geometry/线性代数:解析几何

03/12/2021 KevinZonda

Cartesia Coordinate System/笛卡尔坐标系

通常使用一个对(pair)表示一个坐标。在我们大学,使用竖着的:

$$ \left(\begin{matrix}x\y\\end{matrix}\right) $$

plane: 平面

Vector/向量

$$ \vec{v}=\left(\begin{matrix}x\y\\end{matrix}\right) $$

$$ |\vec{v}|=\sqrt{v_1^2 + v_2^2} $$

$$ \vec{0}=\left(\begin{matrix}0\0\\end{matrix}\right) \text{ null vector} $$

$$ P'=P+\vec{v}=\left(\begin{matrix} p_1 + v_1\\ p_2+v_2\\ \end{matrix}\right) $$

$$ \overrightarrow{PQ}=\left(\begin{matrix} q_1-p_1\\ q_2-p_2\\ \end{matrix}\right) $$

$$ \vec{v}+\vec{w}=\left(\begin{matrix} v_1+w_1\\ v_2+w_2\\ \end{matrix}\right) $$

Scaling

$$ \frac{1}{2}\cdot\vec{v} $$

Rules

$\vec{v}+\vec{0}=\vec{v}$

$1\cdot\vec{v}=\vec{v}$

$0\cdot\vec{v}=\vec{0}$

$s\cdot\vec{0}=\vec{0}$

$(s+t)\cdot\vec{v}=s\cdot\vec{v}+t\cdot\vec{v}$
$s\cdot(\vec{v}+\vec{w})=s\cdot\vec{v}+s\cdot\vec{w}$
$(s\times t)\cdot\vec{v}=s\cdot (t \cdot \vec{v})$

Analytic Geometry

In Plane

$X=P+s\cdot\vec{v}$ parametric representation of a line.

P is a point
s is a parameter
v is a vector

如果假设线 X 与 Y 交于一点:

$X=P+s\cdot\vec{v}$
$Y=Q+t\cdot\vec{w}$
$X=Y$

$$ P+s\cdot\vec{v}=Q+t\cdot\vec{w}\

\left(\begin{matrix} p_1+sv_1\ p_2+sv_2\ \end{matrix}\right)= \left(\begin{matrix} q_1+tw_1\ q_2+tw_2\ \end{matrix}\right)\ p_1+sv_1=q_1+tw_1\ p_2+sv_2=q_2+tw_2\ \Longrightarrow\ sv_1-tw_1=q_1-p_1\ sv_2-tw_2=q_2-p_2 $$

In 3D

$$ \vec{v}=\left(\begin{matrix} v_1\\ v_2\\ v_3\\ \end{matrix}\right)\\ |\vec{v}|=\sqrt{v_1^2 + v_2^2 + v_3^2}\\ $$

$X=P+s\cdot \vec{v}$ is line in 3D

$X=P+s\cdot \vec{v} + t\cdot\vec{w}$ is plane in 3D

Example

$$

X=\left(\begin{matrix} 1\ -2\ 1\ \end{matrix}\right)+s\cdot \left(\begin{matrix} 0\ 2\ 1\ \end{matrix}\right) + t \cdot \left(\begin{matrix} -1\ 1\ -1\ \end{matrix}\right)\

Y=\left(\begin{matrix} 2\ 1\ 0\ \end{matrix}\right)+r\cdot \left(\begin{matrix} 1\ 1\ 0\ \end{matrix}\right) + q \cdot \left(\begin{matrix} 0\ 0\ 1\ \end{matrix}\right) $$

Let X = Y, will get

$$ 1+0\cdot s -t = 2+r+0\cdot q\\ -2+2s+t=1+r+0\cdot q\\ 1+s-t=0+0\cdot r + q $$

Reorganise the equations.

$$ -t-r=1\\ 2s+t-r=3\\ s-t-q=-1 $$

by solving it, will get:

$$ q \text{: choose freely}\\ -3r+2q=8\\ r=-2+q/2 $$

So we got

$$ Y=\left(\begin{matrix} 2\\ 1\\ 0\\ \end{matrix}\right)+(-2+\cfrac{q}{2})\cdot \left(\begin{matrix} 1\\ 1\\ 0\\ \end{matrix}\right) + q \cdot \left(\begin{matrix} 0\\ 0\\ 1\\ \end{matrix}\right)\\ =\left(\begin{matrix} 0\\ -1\\ 0\\ \end{matrix}\right)+ q \cdot \left(\begin{matrix} 0.5\\ 0.5\\ 1\\ \end{matrix}\right)\\ =\left(\begin{matrix} 0\\ -1\\ 0\\ \end{matrix}\right)+ q \cdot \left(\begin{matrix} 1\\ 1\\ 2\\ \end{matrix}\right) $$

Calc Line By Points

$$ P=\left(\begin{matrix} p_1\\ p_1\\ p_2\\ \end{matrix}\right), Q=\left(\begin{matrix} q_1\\ q_1\\ q_2\\ \end{matrix}\right)\\ $$

So we can assume the line $X$ is $X=P+s\cdot \overrightarrow{PQ}$

$$ X=P+s\cdot \overrightarrow{PQ}\\ =P+s\cdot{(Q-P)}\\ =P+s\cdot Q - s\cdot P\\ =(1-s)\cdot P+s \cdot Q $$

Convex combination of P and Q (Bezier Curve).

同样的,对于 3D

$$ X=P+s\cdot \overrightarrow{PQ}+t\cdot \overrightarrow{PR}\\ =(1-s-t)\cdot P + s\cdot Q + t\cdot R $$

其凸组合: $$ 0\leq s \leq 1\ 0\leq t \leq 1\ 0\leq 1 - s- t \leq 1 $$

Algebras of Vectors (Vector Spaces)/向量几何(向量空间)

对于向量,依旧可以定义一个类 ring 的代数系统:

$$ \vec{v}+\vec{w}\\ \vec{v}-\vec{w} \stackrel{\text{def}}{=} \vec{v} + (-1)\cdot \vec{w}\\ \vec{0} $$

我们可以定义向量代数(algebra of vector, or vector space)为

  • 是一个对象(被称为向量)的集合
  • 拥有 +, -, $\vec{0}$, $\cdot$
  • Laws are satisfied

我们可以认为向量代数是一些数字的元组(tuples)($\mathbb{K}$ 的元素)

如果 $V$ 是向量的一个代数,并且 $\vec{v}\in V$

$$ W = \left{ \vec{w} \in V \mid \vec{w} = s \cdot \vec{v} \text{ for some } s\right} $$

$W$ 自己就是向量的一给代数

  • 自己是向量的集合
  • $s\cdot \vec{v}+t\cdot \vec{v}=(s+t)\cdot \vec{v}\in W$
  • $\vec{0}=0\cdot \vec{v}\in W$
  • $t\cdot(s\cdot\vec{v})=(t\times s)\cdot\vec{v}\in W$

$$ W \subseteq V $$

$W$ is a subalgebra of $V$

$$ \vec{v},\vec{u}\in V\qquad W= \left{ \vec{w}\in V \mid \vec{w}=s\cdot\vec{v}+t\cdot\vec{u}\text{ for some } s, t \right} \subseteq V $$

Line: $X=P+s\cdot \vec{v}$
$s\cdot \vec{v}$ is element of a subalgebra

Plane: $X=P+s\cdot \vec{v}+t\cdot \vec{w}$
$s\cdot \vec{v}+t\cdot \vec{w}$ is element of a subalgebra

Affine space? 仿射空间?