forked from dgriff777/rl_a3c_pytorch
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
74 lines (63 loc) · 2.54 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
from __future__ import division
import torch
import torch.optim as optim
from environment import atari_env
from utils import ensure_shared_grads
from model import A3Clstm
from player_util import Agent
from torch.autograd import Variable
def train(rank, args, shared_model, optimizer, env_conf):
torch.manual_seed(args.seed + rank)
env = atari_env(args.env, env_conf)
if optimizer is None:
if args.optimizer == 'RMSprop':
optimizer = optim.RMSprop(shared_model.parameters(), lr=args.lr)
if args.optimizer == 'Adam':
optimizer = optim.Adam(shared_model.parameters(), lr=args.lr)
env.seed(args.seed + rank)
player = Agent(None, env, args, None)
player.model = A3Clstm(
player.env.observation_space.shape[0], player.env.action_space)
player.state = player.env.reset()
player.state = torch.from_numpy(player.state).float()
player.model.train()
while True:
player.model.load_state_dict(shared_model.state_dict())
for step in range(args.num_steps):
player.action(train=True)
if args.count_lives:
player.check_state()
if player.done:
break
if player.done:
player.eps_len = 0
player.current_life = 0
state = player.env.reset()
player.state = torch.from_numpy(state).float()
R = torch.zeros(1, 1)
if not player.done:
value, _, _ = player.model(
(Variable(player.state.unsqueeze(0)), (player.hx, player.cx)))
R = value.data
player.values.append(Variable(R))
policy_loss = 0
value_loss = 0
R = Variable(R)
gae = torch.zeros(1, 1)
for i in reversed(range(len(player.rewards))):
R = args.gamma * R + player.rewards[i]
advantage = R - player.values[i]
value_loss = value_loss + 0.5 * advantage.pow(2)
# Generalized Advantage Estimataion
delta_t = player.rewards[i] + args.gamma * \
player.values[i + 1].data - player.values[i].data
gae = gae * args.gamma * args.tau + delta_t
policy_loss = policy_loss - \
player.log_probs[i] * \
Variable(gae) - 0.01 * player.entropies[i]
optimizer.zero_grad()
(policy_loss + 0.5 * value_loss).backward()
torch.nn.utils.clip_grad_norm(player.model.parameters(), 40)
ensure_shared_grads(player.model, shared_model)
optimizer.step()
player.clear_actions()