-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathconfig.py
52 lines (46 loc) · 1.42 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
random_seed = 100
mct_config = dict(
time_window=20,
global_match_thresh=0.2,
bbox_min_aspect_ratio=1.2 # The less the better performance in terms of people detection
)
sct_config = dict(
time_window=10,
continue_time_thresh=2, # This is the time after which we continue the tracking of person
track_clear_thresh=3000,
match_threshold=0.25, # This is the threshold that two people match in different frames
merge_thresh=0.15,
n_clusters=4,
max_bbox_velocity=0.2, # This is the velocity by which a person is moving and shifting
detection_occlusion_thresh=0.7, # This is the occlusion threshold, when to merge two objects together
track_detection_iou_thresh=0.5,
process_curr_features_number=0,
interpolate_time_thresh=10,
detection_filter_speed=0.6,
rectify_thresh=0.1,
manniquen_thresh=2
)
normalizer_config = dict(
enabled=False,
clip_limit=.5,
tile_size=8
)
visualization_config = dict(
show_all_detections=True,
max_window_size=(1920, 1080),
stack_frames='horizontal'
)
analyzer = dict(
enable=True,
show_distances=False,
save_distances='',
concatenate_imgs_with_distances=True,
plot_timeline_freq=0,
save_timeline='',
crop_size=(32, 64)
)
embeddings = dict(
save_path='',
use_images=True, # Use it with `analyzer['enable'] = True` to save crops of objects
step=0 # Equal to subdirectory for `save_path`
)