-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathrun_evaluate.py
138 lines (114 loc) · 5.78 KB
/
run_evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import argparse
import json
import logging as log
import motmetrics as mm
import numpy as np
from xml.etree import ElementTree as etree
from tqdm import tqdm
from mc_tracker.sct import TrackedObj
from utils.misc import set_log_config
set_log_config()
def read_gt_tracks(gt_filenames, size_divisor=1, skip_frames=0, skip_heavy_occluded_objects=False):
min_last_frame_idx = -1
camera_tracks = [[] for _ in gt_filenames]
for i, filename in enumerate(gt_filenames):
last_frame_idx = -1
tree = etree.parse(filename)
root = tree.getroot()
for track_xml_subtree in tqdm(root, desc='Reading ' + filename):
if track_xml_subtree.tag != 'track':
continue
track = {'id': None, 'boxes': [], 'timestamps': []}
for box_tree in track_xml_subtree.findall('box'):
if skip_frames > 0 and int(box_tree.get('frame')) % skip_frames == 0:
continue
occlusion = [tag.text for tag in box_tree if tag.attrib['name'] == 'occlusion'][0]
if skip_heavy_occluded_objects and occlusion == 'heavy_occluded':
continue
x_left = int(float(box_tree.get('xtl'))) // size_divisor
x_right = int(float(box_tree.get('xbr'))) // size_divisor
y_top = int(float(box_tree.get('ytl'))) // size_divisor
y_bottom = int(float(box_tree.get('ybr'))) // size_divisor
assert x_right > x_left
assert y_bottom > y_top
track['boxes'].append([x_left, y_top, x_right, y_bottom])
track['timestamps'].append(int(box_tree.get('frame')) // size_divisor)
last_frame_idx = max(last_frame_idx, track['timestamps'][-1])
id = [int(tag.text) for tag in box_tree if tag.attrib['name'] == 'id'][0]
track['id'] = id
camera_tracks[i].append(track)
if min_last_frame_idx < 0:
min_last_frame_idx = last_frame_idx
else:
min_last_frame_idx = min(min_last_frame_idx, last_frame_idx)
return camera_tracks, min_last_frame_idx
def get_detections_from_tracks(tracks_history, time):
active_detections = [[] for _ in tracks_history]
for i, camera_hist in enumerate(tracks_history):
for track in camera_hist:
if time in track['timestamps']:
idx = track['timestamps'].index(time)
active_detections[i].append(TrackedObj(track['boxes'][idx], track['id']))
return active_detections
def check_contain_duplicates(all_detections):
for detections in all_detections:
all_labels = [obj.label for obj in detections]
uniq = set(all_labels)
if len(all_labels) != len(uniq):
return True
return False
def main():
"""Computes MOT metrics for the multi camera multi person tracker"""
parser = argparse.ArgumentParser(description='Multi camera multi person \
tracking visualization demo script')
parser.add_argument('--history_file', type=str, default='', required=True,
help='File with tracker history')
parser.add_argument('--gt_files', type=str, nargs='+', required=True,
help='Files with ground truth annotation')
parser.add_argument('--size_divisor', type=int, default=1,
help='Scale factor for GT image resolution')
parser.add_argument('--skip_frames', type=int, default=0,
help='Frequency of skipping frames')
args = parser.parse_args()
with open(args.history_file) as hist_f:
history = json.load(hist_f)
assert len(args.gt_files) == len(history)
gt_tracks, last_frame_idx = read_gt_tracks(args.gt_files,
size_divisor=args.size_divisor,
skip_frames=args.skip_frames)
accs = [mm.MOTAccumulator(auto_id=True) for _ in args.gt_files]
for time in tqdm(range(last_frame_idx + 1), 'Processing detections'):
active_detections = get_detections_from_tracks(history, time)
if check_contain_duplicates(active_detections):
log.info('Warning: at least one IDs collision has occured at the timestamp ' + str(time))
gt_detections = get_detections_from_tracks(gt_tracks, time)
for i, camera_gt_detections in enumerate(gt_detections):
gt_boxes = []
gt_labels = []
for obj in camera_gt_detections:
gt_boxes.append([obj.rect[0], obj.rect[1],
obj.rect[2] - obj.rect[0],
obj.rect[3] - obj.rect[1]])
gt_labels.append(obj.label)
ht_boxes = []
ht_labels = []
for obj in active_detections[i]:
ht_boxes.append([obj.rect[0], obj.rect[1],
obj.rect[2] - obj.rect[0],
obj.rect[3] - obj.rect[1]])
ht_labels.append(obj.label)
distances = mm.distances.iou_matrix(np.array(gt_boxes),
np.array(ht_boxes), max_iou=0.5)
accs[i].update(gt_labels, ht_labels, distances)
log.info('Computing MOT metrics...')
mh = mm.metrics.create()
summary = mh.compute_many(accs,
metrics=mm.metrics.motchallenge_metrics,
generate_overall=True,
names=['video ' + str(i) for i in range(len(accs))])
strsummary = mm.io.render_summary(summary,
formatters=mh.formatters,
namemap=mm.io.motchallenge_metric_names)
print(strsummary)
if __name__ == '__main__':
main()