-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathFunction_quadratic.jl
225 lines (180 loc) · 6.52 KB
/
Function_quadratic.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
function solve_system_quad(;params)
function static_funct(p)
@unpack σ, ψ, A, α, γ,κ = p
function ι(q)
return((q-1.0)/κ)
end
function ℓ(C,k,q)
return(k*((C/k+ι(q))/A)^(1.0/(1.0-α)))
end
function w(C,k,q)
return (ℓ(C,k,q)^(ψ)*C^(γ))
end
function ν_k(C,k,q)
return((1.0/q)*(α/(1.0-α))*w(C,k,q)*(ℓ(C,k,q)/k))
end
function χ(C,k,q)
return((w(C,k,q)/(1.0-α))^(1.0-α)*(q*ν_k(C,k,q)/α)^(α))
end
function Y(C,k,q)
return(A*(k)^(α)*(ℓ(C,k,q))^(1-α))
end
return (ι=ι,ℓ=ℓ,w=w,ν_k=ν_k,χ=χ,Y=Y)
end
function NK!(du,u,p,t)
@unpack σ,ϵ, θ, ϕ, ψ, ρ̄, θᵨ, θᵢ, κ, δ, A, χₙ = p
@unpack ι, ℓ, w, ν_k, χ, Y = static_funct(p)
q = u[1]
C = u[2]
k = u[3]
π = u[4]
ρ = u[5]
i = u[6]
du[1] = q*(i-π+(ι(q)+κ*(ι(q))^(2.0)/2.0)/q-ι(q)-ν_k(C,k,q))
du[2] = σ*C*(i-π-ρ)
du[3] = ι(q)*k
du[4] = π*((1.0-σ)*(i-π)+σ*ρ)-((ϵ-1.0)/θ)*(χ(C,k,q)/χₙ-1.0)
du[5] = -θᵨ*(ρ-ρ̄)
du[6] = -θᵢ*(i-ϕ*π-ρ̄)
end
function SS(p)
@unpack α, γ, σ, ϵ, θ, ϕ, ψ, ρ̄, θᵨ, θᵢ, κ, δ, A = p
π_ss = 0.0
ρ_ss = ρ̄
i_ss = ρ̄
k_c = (α/(ρ̄))*((ϵ-1.0)/ϵ)*(1.0+θ/(ϵ-1.0)*ρ̄*π_ss)
k_l = (A*k_c)^(1.0/(1.0-α))
q_ss = 1.0
k_ss = (ρ̄*((1-α)/α)*(k_l)^(1+ψ)*(k_c)^(γ))^(1/(ψ+γ))
C_ss = k_ss/k_c
return(π_ss=π_ss,
C_ss = C_ss,
q_ss = q_ss,
k_ss = k_ss,
ρ_ss = ρ_ss,
i_ss = i_ss,
ℓ_ss = k_ss/k_l,
ι_ss = 0.0)
end
function u_0(p)
@unpack q_ss, C_ss, k_ss, π_ss, i_ss = SS(p)
@unpack init_ρ = p
return ([q_ss,C_ss,k_ss,π_ss,init_ρ,i_ss])
end
p = (σ=params.σ,ϵ=params.ϵ,θ=params.θ,
ϕ = params.ϕ, ψ = params.ψ, ρ̄ = params.ρ̄, θᵨ = params.θᵨ,
θᵢ = params.θᵢ, κ = params.κ, δ = params.δ, A = params.A,
χₙ = params.χₙ, γ = params.γ, α = params.α, init_ρ = params.init_ρ)
function bc1!(residual,u,p,t)
@unpack q_ss, C_ss, k_ss, π_ss, ρ_ss, i_ss = SS(p)
@unpack init_ρ = p
residual[1] = u[end][1]- q_ss
residual[2] = u[end][2]- C_ss
residual[3] = u[end][4]- π_ss
residual[4] = u[1][3]- k_ss
residual[5] = u[1][5]- init_ρ
residual[6] = u[1][6]- i_ss
end
bvp1 = TwoPointBVProblem(NK!, bc1!, u_0(p), (0.0,params.T),(p))
u = solve(bvp1, MIRK4(), dt=params.dt)
function result(u,p)
@unpack δ = p
@unpack q_ss, C_ss, k_ss, π_ss, i_ss, ℓ_ss, ι_ss, ρ_ss = SS(p)
q = @view u[1,:][:]
C = @view u[2,:][:]
k = @view u[3,:][:]
π = @view u[4,:][:]
i = @view u[6,:][:]
sol1 = similar(zeros(size(u)[1]+3,size(u)[2]))
sol1[1:size(u)[1]-1,:] = @view u[2:end,:]
@unpack ι, ℓ, w, ν_k, χ, Y = static_funct(p)
sol1[3,:] = sol1[3,:].+1.0
sol1[6,:] = ι.(q) .+ δ
sol1[7,:] = ℓ.(C,k,q)
sol1[8,:] = Y.(C,k,q)
sol1[9,:] = i.-π
SS_vec = similar(sol1[:,1])
SS_vec[1] = C_ss
SS_vec[2] = k_ss
SS_vec[3] = π_ss+1.0
SS_vec[4] = ρ_ss
SS_vec[5] = i_ss
SS_vec[6] = ι_ss+ δ
SS_vec[7] = ℓ_ss
SS_vec[8] = Y.(C_ss,k_ss,q_ss)
SS_vec[9] = i_ss-π_ss
return(SS_vec=SS_vec,sol1=sol1)
end
@unpack sol1, SS_vec = result(u,p)
return (sol=sol1,SS=SS_vec,t=u.t)
end
@unpack T, ϕ, dt = pp
function plot_IRF_quad(;var =["C","k","\\pi","\\rho","i","\\iota","\\ell","Y","r"],
solution,T_end=T)
N_end = T_end/dt+1
val = ["C","k","\\pi","\\rho","i","\\iota","\\ell","Y","r"]
pos = (zeros(length(var)))
for k in 1: length(var)
pos[k] = findfirst(isequal(var[k]),val)
end
pos = round.(Int, pos)
val = val[pos]
lab = [latexstring("\$\\widehat{{$(u)}}_{t}\$") for u in val]
lab = reshape(lab,(1,length(val)))
SS = solution.SS
dev = ((solution.sol.-SS)./SS)*100
pp = [dev[k,1:round(Int,N_end)] for k in pos]
p=plot(solution.t[1:round(Int,N_end)],pp,
label = lab,
xlabel = L"t",
legendfontsize = 8,
ylabel = L"\%",
legend = :outertopright,
palette=:tab20)
display(p)
return(p)
end
function compute_dev_quad(;solution,n,T)
SS = solution.SS[n]
dev = (((@view solution.sol[n,:]).-SS)./SS)*100
N = T/dt+1
cum = sum(@view dev[1:floor(Int,N)])
return (cum)
end
function plot_θ_cum_quad(;var="Y",θ_range=range(.1,500,length=5),ϕ=ϕ,
T_range=[0,T],κ_range=[3,30,300],T=pp.T,dt=pp.dt)
val = ["C","k","\\pi","\\rho","i","\\iota","\\ell","Y","r"]
n = findfirst(isequal(var), val)
N = length(T_range)*length(κ_range)
lab = [latexstring("\$T={$(T)},\\kappa={$(κ)}\$") for (T,κ) in Iterators.product(T_range, κ_range)][:]
lab = reshape(lab,1,N)
y = similar(zeros(length(θ_range),N))
j = 0
for θ in θ_range
j = j+1
k = 0
for κ in κ_range
solution = solve_system_quad(;params=define_env(θ=θ,κ=κ,T=T,N_t=T/dt,ϕ=ϕ))
for T in T_range
k = k+1
y[j,k] = compute_dev_quad(;solution=solution,n=n,T=T)
end
end
end
lines = [:dash for k in 1:N]
for k in 1: floor(Int,N/2)
lines[2*k] =:solid
end
lines = reshape(lines,1,N)
p = plot(θ_range,
y,
label = lab,
xlabel = L"\theta",
ylabel = latexstring("\$\\sum_{t=0}{T}\\widehat{{$(val[n])}}_{t}\\left(\\%,\\phi=$(ϕ)\\right)\$"),
legendfontsize = 7,
palette = palette([:blue,:red],N),
linestyle = lines,
legend = :outertopright)
savefig(p,"theta_cum_$(val[n])_$(T_range[1])_quad.svg")
display(p)
end