-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
66 lines (54 loc) · 2.69 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import argparse
import os
import torch
import setproctitle
from model.net import Model
from predict import AverageMeter, test_softmax
from data.datasets_nii import Brats_loadall_test_nii
from utils.lr_scheduler import LR_Scheduler, record_loss, MultiEpochsDataLoader
parser = argparse.ArgumentParser()
parser.add_argument('--user', default='name of user', type=str)
parser.add_argument('--gpu', default='0', type=str)
parser.add_argument('--dataname', default='BRATS2020', type=str)
parser.add_argument('--resume', default='BraTS2020/split/model_last.pth', type=str)
parser.add_argument('--datapath', default='/home/oem/data/dataset/BraTS-npy/BraTS20', type=str)
parser.add_argument('--savepath', default='BrsTS2020_img/', type=str)
args = parser.parse_args()
if __name__ == '__main__':
setproctitle.setproctitle('{}: Testing!'.format(args.user))
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
masks = [[False, False, False, True], [False, True, False, False], [False, False, True, False],
[True, False, False, False],
[False, True, False, True], [False, True, True, False], [True, False, True, False],
[False, False, True, True], [True, False, False, True], [True, True, False, False],
[True, True, True, False], [True, False, True, True], [True, True, False, True], [False, True, True, True],
[True, True, True, True]]
mask_name = ['t2', 't1c', 't1', 'flair',
't1cet2', 't1cet1', 'flairt1', 't1t2', 'flairt2', 'flairt1ce',
'flairt1cet1', 'flairt1t2', 'flairt1cet2', 't1cet1t2',
'flairt1cet1t2']
train_file = 'train.txt'
test_file = 'test.txt'
test_transforms = 'Compose([NumpyType((np.float32, np.int64)),])'
num_cls = 4
test_set = Brats_loadall_test_nii(transforms=test_transforms, root=args.datapath, test_file=test_file)
test_loader = MultiEpochsDataLoader(dataset=test_set, batch_size=1, shuffle=False, num_workers=0, pin_memory=True)
model = Model(num_cls=num_cls)
model = torch.nn.DataParallel(model).cuda()
checkpoint = torch.load(args.resume)
model.load_state_dict(checkpoint['state_dict'])
test_score = AverageMeter()
with torch.no_grad():
print('###########test postprocess###########')
for i, mask in enumerate(masks):
print('{}'.format(mask_name[i]))
mask_n = mask_name[i]
dice_score = test_softmax(
test_loader,
model,
savepath=args.savepath,
dataname=args.dataname,
feature_mask=mask,
mask_name=mask_n)
test_score.update(dice_score)
print('Avg scores: {}'.format(test_score.avg))