forked from xiwenc1/DeepDIH
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
115 lines (96 loc) · 3.71 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
from common import *
from networks import *
import torch
import torch.nn as nn
import numpy as np
import PIL.Image as Image
import matplotlib.pyplot as plt
import torchvision.transforms as transforms
from torch import optim
from torch.autograd import Variable
import torch.nn.functional as F
from torchsummary import summary
import cv2
import torch.fft
def main(Nx=1000, Ny=1000, z=857, wavelength=0.635, deltaX=1.67, deltaY=1.67):
# optical parameters
img = Image.open("Image1.bmp")
# pytorch provides a function to convert PIL images to tensors.
pil2tensor = transforms.ToTensor()
tensor2pil = transforms.ToPILImage()
tensor_img = pil2tensor(img)
g = tensor_img.numpy()
g = np.sqrt(g)
g = (g - np.min(g)) / (np.max(g) - np.min(g))
plt.figure(figsize=(20, 15))
plt.imshow(np.squeeze(g), cmap="gray")
phase = propagator(Nx, Ny, z, wavelength, deltaX, deltaY)
eta = np.fft.ifft2(np.fft.fft2(g) * np.fft.fftshift(np.conj(phase)))
plt.figure(figsize=(20, 15))
plt.imshow(np.squeeze(np.abs(eta)), cmap="gray")
criterion_1 = RECLoss()
model = Net().cuda()
optimer_1 = optim.Adam(model.parameters(), lr=5e-3)
device = torch.device("cuda")
epoch_1 = 5000
epoch_2 = 2000
period = 100
eta = torch.from_numpy(
np.concatenate(
[np.real(eta)[np.newaxis, :, :], np.imag(eta)[np.newaxis, :, :]], axis=1
)
)
holo = torch.from_numpy(
np.concatenate(
[np.real(g)[np.newaxis, :, :], np.imag(g)[np.newaxis, :, :]], axis=1
)
)
for i in range(100):
in_img = eta.to(device)
target = holo.to(device)
out = model(in_img)
l1_loss = criterion_1(out, target)
loss = l1_loss
optimer_1.zero_grad()
loss.backward()
optimer_1.step()
print(
"epoch [{}/{}] Loss: {}".format(
i + 1, epoch_1, l1_loss.cpu().data.numpy()
)
)
if ((i) % period) == 0:
outtemp = out.cpu().data.squeeze(0).squeeze(1)
outtemp = outtemp
plotout = torch.sqrt(outtemp[0, :, :] ** 2 + outtemp[1, :, :] ** 2)
plotout = (plotout - torch.min(plotout)) / (
torch.max(plotout) - torch.min(plotout)
)
amplitude = np.array(plotout)
amplitude = amplitude.astype("float32") * 255
cv2.imwrite("./results/Amplitude/iter%d.bmp" % (i), amplitude)
plotout_p = (torch.atan(outtemp[1, :, :] / outtemp[0, :, :])).numpy()
plotout_p = Phase_unwrapping(plotout_p)
plotout_p = (plotout_p - np.min(plotout_p)) / (
np.max(plotout_p) - np.min(plotout_p)
)
phase = np.array(plotout_p)
phase = phase.astype("float32") * 255
cv2.imwrite("./results/Phase/iter%d.bmp" % (i), phase)
outtemp = out.cpu().data.squeeze(0).squeeze(1)
outtemp = outtemp
plotout = torch.sqrt(outtemp[0, :, :] ** 2 + outtemp[1, :, :] ** 2)
plotout = (plotout - torch.min(plotout)) / (torch.max(plotout) - torch.min(plotout))
amplitude = np.array(plotout)
amplitude = amplitude.astype("float32") * 255
cv2.imwrite("./results/Amplitude/final.bmp", amplitude)
plotout_p = (torch.atan(outtemp[1, :, :] / outtemp[0, :, :])).numpy()
plotout_p = Phase_unwrapping(plotout_p)
plotout_p = (plotout_p - np.min(plotout_p)) / (
np.max(plotout_p) - np.min(plotout_p)
)
phase = np.array(plotout_p)
phase = phase.astype("float32") * 255
cv2.imwrite("./results/Phase/final.bmp", phase)
if __name__ == "__main__":
main()