-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
157 lines (125 loc) · 5.22 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
from typing import Optional, Callable, Tuple
import tensorflow as tf
import tensorflow_gnn as tfgnn
from tensorflow_gnn.graph import graph_constants as const
from tensorflow_gnn.graph import graph_tensor_ops as ops
class EdgeEncoder(tf.keras.layers.Layer):
"""
simple edge encoder make the dim of edge and node consistent
"""
def __init__(self, emb_dim):
super(EdgeEncoder, self).__init__()
self.dense1 = tf.keras.layers.Dense(2 * emb_dim)
self.dense2 = tf.keras.layers.Dense(emb_dim)
def call(self, h):
h = self.dense1(h)
h = self.dense2(h)
return h
class GINConv(tfgnn.keras.layers.AnyToAnyConvolutionBase):
def __init__(
self,
message_fn: tf.keras.layers.Layer,
node_feature_dim: int,
reduce_type: str = "sum",
*,
combine_type: str = "concat",
receiver_tag: const.IncidentNodeTag = const.TARGET,
receiver_feature: const.FieldName = const.HIDDEN_STATE,
sender_node_feature: Optional[
const.FieldName] = const.HIDDEN_STATE,
sender_edge_feature: Optional[const.FieldName] = None,
**kwargs):
super().__init__(
receiver_tag=receiver_tag,
receiver_feature=receiver_feature,
sender_node_feature=sender_node_feature,
sender_edge_feature=sender_edge_feature,
**kwargs)
self._message_fn = message_fn
self._reduce_type = reduce_type
self._combine_type = combine_type
self.node_feature_dim = node_feature_dim
self.edge_encoder = EdgeEncoder(emb_dim=self.node_feature_dim)
def get_config(self):
return dict(
message_fn=self._message_fn,
reduce_type=self._reduce_type,
combine_type=self._combine_type,
**super().get_config())
def convolve(self, *,
sender_node_input: Optional[tf.Tensor],
sender_edge_input: Optional[tf.Tensor],
receiver_input: Optional[tf.Tensor],
broadcast_from_sender_node: Callable[[tf.Tensor], tf.Tensor],
broadcast_from_receiver: Callable[[tf.Tensor], tf.Tensor],
pool_to_receiver: Callable[..., tf.Tensor],
training: bool) -> tf.Tensor:
# Collect inputs, suitably broadcast.
inputs = []
if sender_edge_input is not None:
# Encoder edge feature
inputs.append(self.edge_encoder(sender_edge_input))
if sender_node_input is not None:
inputs.append(broadcast_from_sender_node(sender_node_input))
if receiver_input is not None:
inputs.append(broadcast_from_receiver(receiver_input))
# sum(edge, node)
combined_input = ops.combine_values(inputs, self._combine_type)
# relu(sum(edge, node))
messages = self._message_fn(combined_input)
# sum(Hu_k) aggregate neighbour nodes based on sum
pooled_messages = pool_to_receiver(messages, reduce_type=self._reduce_type)
return pooled_messages
class GINNodeUpdate(tf.keras.layers.Layer):
def __init__(self, node_dim):
super(GINNodeUpdate, self).__init__()
self.mlp = MLP(node_dim=node_dim)
self.bn = tf.keras.layers.BatchNormalization()
def build(self,input_shape):
self.eps = self.add_weight(shape=(1,),
initializer=tf.keras.initializers.RandomNormal(),
trainable=True)
def call(self, inputs: Tuple[
const.FieldOrFields, const.FieldsNest, const.FieldsNest]):
node, edge, _ = inputs
# Hv_k = MLP((1+epsilon) * Hv_k-1 + sum(Hu_k))
h = self.mlp((1 + self.eps) * node + edge['edge'])
h = self.bn(h)
return h
class MLP(tf.keras.layers.Layer):
def __init__(self, node_dim):
super(MLP, self).__init__()
self.dense1 = tf.keras.layers.Dense(2 * node_dim)
self.bn1 = tf.keras.layers.BatchNormalization()
self.relu = tf.keras.layers.Activation('relu')
self.dense2 = tf.keras.layers.Dense(node_dim)
def call(self, x):
h = self.dense1(x)
h = self.bn1(h)
h = self.relu(h)
h = self.dense2(h)
return h
class GIN(tf.keras.Model):
def __init__(self, node_dim):
super(GIN, self).__init__()
self.node_dim = node_dim
self.relu = tf.keras.layers.Activation('relu')
self.model = tfgnn.keras.layers.GraphUpdate(
node_sets={
'node': tfgnn.keras.layers.NodeSetUpdate(
edge_set_inputs={'edge': GINConv(
sender_edge_feature=tfgnn.HIDDEN_STATE,
node_feature_dim=self.node_dim,
receiver_feature=None,
message_fn=self.relu,
reduce_type="sum",
combine_type='sum',
receiver_tag=tfgnn.TARGET,
)},
next_state=GINNodeUpdate(node_dim=self.node_dim),
)
}
)
def call(self, batched_data):
out = self.model(batched_data)
return out