-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
174 lines (147 loc) · 6.18 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import torch
from fastai.data.all import *
from fastai.vision.all import *
from sklearn.linear_model import LinearRegression
from collections import Counter
from scipy.ndimage import convolve1d, gaussian_filter1d
class FreezeDiscriminator(Callback):
def before_batch(self):
if self.gen_train == 0:
for name, param in self.learn.model.named_parameters():
if "fc_crit" in name:
param.requires_grad_(True)
else:
param.requires_grad_(False)
else:
for name, param in self.learn.model.named_parameters():
if "fc_crit" in name:
param.requires_grad_(False)
else:
param.requires_grad_(True)
class GetLatentSpace(Callback):
def after_batch(self):
if not self.training:
if not hasattr(self, 'zi_valid') or self.zi_valid.numel() == 0:
print(self.zi.shape)
if hasattr(self, 'zi'):
self.learn.zi_valid = self.zi
else:
self.learn.zi_valid = self.generator.zi
else:
if hasattr(self, 'zi'):
self.learn.zi_valid = torch.vstack((self.learn.zi_valid,self.zi))
else:
self.learn.zi_valid = torch.vstack((self.learn.zi_valid,self.generator.zi))
class LossAttrMetric(Metric):
def __init__(self, attr):
self.attr_name = attr
self.vals = []
def reset(self):
self.vals = []
def accumulate(self, learn):
setattr(self, self.attr_name, getattr(learn, self.attr_name))
self.vals.append(getattr(self, self.attr_name))
@property
def value(self):
return torch.mean(torch.tensor(self.vals))
@property
def name(self):
return self.attr_name
def label_func(f):
name = f.name #on veut accéder aux noms uniquement
if name[0].isupper(): #on veut tester la première lettre uniquement donc on applique "isupper" au premier élément de name (name[0])
lab = torch.tensor([1, 0], dtype=torch.float32)
else:
lab = torch.tensor([0, 1], dtype=torch.float32)
return lab
# Compute the regularized linear regression of the latent space wrt the labels
def distrib_regul_regression(z, target, nbins: int=100, get_reg: bool=False):
bin_edges = np.linspace(target.min(), target.max(), nbins+1)
# Assign each value in the data to its corresponding category based on the bin edges
labels = np.digitize(target, bin_edges)
bin_index_per_label = [int(label) for label in labels]
# calculate empirical (original) label distribution: [Nb,]
# "Nb" is the number of bins
Nb = max(bin_index_per_label) + 1
num_samples_of_bins = dict(Counter(bin_index_per_label))
emp_label_dist = [num_samples_of_bins.get(i, 0) for i in range(Nb)]
# lds_kernel_window: [ks,], here for example, we use gaussian, ks=5, sigma=2
lds_kernel_window = get_lds_kernel_window(kernel='gaussian', ks=5, sigma=2)
# calculate effective label distribution: [Nb,]
eff_label_dist = convolve1d(np.array(emp_label_dist), weights=lds_kernel_window, mode='constant')
# Use re-weighting based on effective label distribution, sample-wise weights: [Ns,]
eff_num_per_label = [eff_label_dist[bin_idx] for bin_idx in bin_index_per_label]
weights = [np.float32(1 / x) for x in eff_num_per_label]
reg = LinearRegression().fit(z, target.view(-1), sample_weight=weights)
out = np.dot(z, reg.coef_) + reg.intercept_
if get_reg:
return out, reg
else:
return out
def compute_main_direction(predictions_embedded, safelab):
# Calculate the mean of x and y for the darkest and lightest colors
dark_mask = safelab == 0
light_mask = safelab == 1
dark_mean = np.mean(predictions_embedded[dark_mask, :], axis=0)
light_mean = np.mean(predictions_embedded[light_mask, :], axis=0)
# Get the difference between dark_mean and light_mean
diff = light_mean - dark_mean
# Calculate the slope
m = diff[1] / diff[0]
# Calculate the intercept
b = dark_mean[1] - m * dark_mean[0]
# Calculer les points de début et de fin de la droite régressée
x, y = predictions_embedded[:, 0], predictions_embedded[:, 1]
# max_x = np.max(np.abs(x)) - 5
# max_y = np.max(np.abs(y)) - 5
max_x = 70
max_y = 70
# if max_x >= max_y:
if np.abs(m) <= 1:
x_main = True
x_min, x_max = -max_x, max_x
else:
x_main = False
x_min, x_max = (-max_y - b) / m, (max_y - b) / m
y_min, y_max = x_min * m + b, x_max * m + b
# Sort the trials along the severity direction
x_proj = []
for x, y in predictions_embedded:
x_proj.append((x + m * y - m * b) / (1 + m ** 2))
x_proj = np.array(x_proj)
print(dark_mean, light_mean)
if dark_mean[0] > light_mean[0]:
print('case 1')
arrow = -x_proj
max_x = -max_x
# _, idx_sort = torch.tensor(-x_proj).sort()
elif dark_mean[0] < light_mean[0]:
arrow = x_proj
else:
raise ValueError("Severity direction is vertical")
if dark_mean[1] > light_mean[1]:
max_y = -max_y
_, idx_sort = torch.tensor(arrow).sort()
# Define start/end point of the arrow
if x_main:
min_y = m * -max_x + b
max_y = m * max_x + b
start = (-max_x,min_y)
end = (max_x,max_y)
else:
min_x, max_x = (-max_y - b) / m, (max_y - b) / m
start = (min_x,-max_y)
end = (max_x,max_y)
return start, end
def get_lds_kernel_window(kernel, ks, sigma):
assert kernel in ['gaussian', 'triang', 'laplace']
half_ks = (ks - 1) // 2
if kernel == 'gaussian':
base_kernel = [0.] * half_ks + [1.] + [0.] * half_ks
kernel_window = gaussian_filter1d(base_kernel, sigma=sigma) / max(gaussian_filter1d(base_kernel, sigma=sigma))
elif kernel == 'triang':
kernel_window = triang(ks)
else:
laplace = lambda x: np.exp(-abs(x) / sigma) / (2. * sigma)
kernel_window = list(map(laplace, np.arange(-half_ks, half_ks + 1))) / max(map(laplace, np.arange(-half_ks, half_ks + 1)))
return kernel_window