-
Notifications
You must be signed in to change notification settings - Fork 11
/
textgan.py
184 lines (157 loc) · 6.36 KB
/
textgan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#################################################
### THIS FILE WAS AUTOGENERATED! DO NOT EDIT! ###
#################################################
# file to edit: notebooks/textgan.ipynb
from lang_model import *
def lm_loss(input, target, kld_weight=0):
sl, bs = target.size()
sl_in,bs_in,nc = input.size()
return F.cross_entropy(input.view(-1,nc), target.view(-1))
def bn_drop_lin(n_in, n_out, bn=True, initrange=0.01,p=0, bias=True, actn=nn.LeakyReLU(inplace=True)):
layers = [nn.BatchNorm1d(n_in)] if bn else []
if p != 0: layers.append(nn.Dropout(p))
linear = nn.Linear(n_in, n_out, bias=bias)
if initrange:linear.weight.data.uniform_(-initrange, initrange)
if bias: linear.bias.data.zero_()
layers.append(linear)
if actn is not None: layers.append(actn)
return layers
class TextDicriminator(nn.Module):
def __init__(self,encoder, nh, bn_final=True):
super().__init__()
#encoder
self.encoder = encoder
#classifier
layers = []
layers+=bn_drop_lin(nh*3,nh,bias=False)
layers += bn_drop_lin(nh,nh,p=0.25)
layers+=bn_drop_lin(nh,1,p=0.15,actn=nn.Sigmoid())
if bn_final: layers += [nn.BatchNorm1d(1)]
self.layers = nn.Sequential(*layers)
def pool(self, x, bs, is_max):
f = F.adaptive_max_pool1d if is_max else F.adaptive_avg_pool1d
return f(x.permute(0,2,1), (1,)).view(bs,-1)
def forward(self, inp,y=None):
raw_outputs, outputs = self.encoder(inp)
output = outputs[-1]
bs,sl,_ = output.size()
avgpool = self.pool(output, bs, False)
mxpool = self.pool(output, bs, True)
x = torch.cat([output[:,-1], mxpool, avgpool], 1)
out = self.layers(x)
return out
def seq_gumbel_softmax(input):
samples = []
bs,sl,nc = input.size()
for i in range(sl):
z = F.gumbel_softmax(input[:,i,:])
samples.append(torch.multinomial(z,1))
samples = torch.stack(samples).transpose(1,0).squeeze(2)
return samples
from tqdm import tqdm
def reinforce_loss(input,sample,reward):
loss=0
bs,sl = sample.size()
for i in range(sl):
loss += -input[:,i,sample[:,i]] * reward
return loss/sl
def step_gen(ds,gen,disc,optG,crit=None):
gen.train(); disc.train()
x,y = ds
bs,sl = x.size()
fake,_,_ = gen(x)
gen.zero_grad()
fake_sample =seq_gumbel_softmax(fake)
with torch.no_grad():
gen_loss = reward = disc(fake_sample)
if crit: gen_loss = crit(fake,fake_sample,reward.squeeze(1))
gen_loss = gen_loss.mean()
gen_loss.requires_grad_(True)
gen_loss.backward()
optG.step()
return gen_loss.data.item()
def step_disc(ds,gen,disc,optD,d_iters):
for j in range(d_iters):
gen.eval(); disc.train()
with torch.no_grad():
fake,_,_ = gen(x)
fake_sample = seq_gumbel_softmax(fake)
disc.zero_grad()
fake_loss = disc(fake_sample)
real_loss = disc(y.view(bs,sl))
disc_loss = (fake_loss-real_loss).mean(0)
disc_loss.backward()
optimizerD.step()
return disc_loss.data.item()
def evaluate(ds,gen,disc,crit=None):
with torch.no_grad():
x, y = ds
bs,sl = x.size()
fake,_,_ = gen(x)
fake_sample =seq_gumbel_softmax(fake)
gen_loss = reward = disc(fake_sample)
if crit: gen_loss = crit(fake,fake_sample,reward.squeeze(1))
gen_loss = gen_loss.mean()
fake_sample = seq_gumbel_softmax(fake)
fake_loss = disc(fake_sample).mean(0).view(1).data.item()
real_loss = disc(y.view(bs,sl)).mean(0).view(1).data.item()
disc_loss = (fake_loss-real_loss).mean(0).view(1).data.item()
return fake,gen_loss,disc_loss,fake_loss
def train(gen, disc, epochs, trn_dl, val_dl, optimizerD, optimizerG, crit=None,first=True):
gen_iterations = 0
for epoch in range(epochs):
gen.train(); disc.train()
n = len(trn_dl)
#train loop
with tqdm(total=n) as pbar:
for i, ds in enumerate(trn_dl):
gen_loss = step_gen(ds,gen,disc,optimizerG,crit)
gen_iterations += 1
d_iters = 3
disc_loss = step_disc(ds,gen,disc,optimizerD,d_iters)
pbar.update()
print(f'Epoch {epoch}:')
print('Train Loss:')
print(f'Loss_D {disc_loss}; Loss_G {gen_loss} Ppx {torch.exp(lm_loss(fake,y))}')
print(f'D_real {real_loss}; Loss_D_fake {fake_loss}')
disc.eval(), gen.eval()
with tqdm(total=len(val_dl)) as pbar:
for i, ds in enumerate(val_dl):
fake,gen_loss,disc_loss,fake_loss = evaluate(ds,gen,disc,crit)
pbar.update()
print('Valid Loss:')
print(f'Loss_D {disc_loss}; Loss_G {gen_loss} Ppx {torch.exp(lm_loss(fake,ds[-1]))}')
print(f'D_real {real_loss}; Loss_D_fake {fake_loss}')
nh = {'AWD':400,'XL':410}
crits={'gumbel':None,'reinforce':reinforce_loss}
#train a language model with gan objective
def run(path,filename,pretrained,model,crit=None,preds=True,epochs=6):
#load data after running preprocess
print(f'loading data from {path}/{filename};')
data_lm = load_data(path, filename)
trn_dl = data_lm.train_dl
val_dl = data_lm.valid_dl
#select encoder for model
print(f'training text gan model {model}; pretrained from {pretrained};')
learn = language_model_learner(data_lm, arch=models[model])
learn.load(pretrained)
encoder = deepcopy(learn.model[0])
generator = deepcopy(learn.model)
generator.load_state_dict(learn.model.state_dict())
disc = TextDicriminator(encoder,nh[model]).cuda()
disc.train()
generator.train()
#create optimizers
optimizerD = optim.Adam(disc.parameters(), lr = 3e-4)
optimizerG = optim.Adam(generator.parameters(), lr = 3e-3, betas=(0.7, 0.8))
print(f'training for {epochs} epochs')
train(generator, disc, epochs, trn_dl, val_dl, optimizerD, optimizerG, first=False)
#save model
learn.model.load_state_dict(generator.state_dict())
print(f'saving model to {path}/{filename}_{model}_gan_{crit}')
learn.save(filename+'_'+model+'_gan_'+crit)
#generate output from validation set
if preds:
print(f'generating predictions and saving to {path}/{filename}_{model}_preds.txt;')
get_valid_preds(learn,data_lm,filename+'_'+model+'_preds.txt')
if __name__ == '__main__': fire.Fire(run)