forked from dome272/MaskGIT-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtraining_transformer.py
140 lines (125 loc) · 6.6 KB
/
training_transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import os
import numpy as np
from tqdm import tqdm
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import utils as vutils
from transformer import VQGANTransformer
from utils import load_data, plot_images
from lr_schedule import WarmupLinearLRSchedule
from torch.utils.tensorboard import SummaryWriter
class TrainTransformer:
def __init__(self, args):
self.model = VQGANTransformer(args).to(device=args.device)
self.optim = self.configure_optimizers()
self.lr_schedule = WarmupLinearLRSchedule(
optimizer=self.optim,
init_lr=1e-6,
peak_lr=args.learning_rate,
end_lr=0.,
warmup_epochs=10,
epochs=args.epochs,
current_step=args.start_from_epoch
)
if args.start_from_epoch > 1:
self.model.load_checkpoint(args.start_from_epoch)
print(f"Loaded Transformer from epoch {args.start_from_epoch}.")
if args.run_name:
self.logger = SummaryWriter(f"./runs/{args.run_name}")
else:
self.logger = SummaryWriter()
self.train(args)
def train(self, args):
train_dataset = load_data(args)
len_train_dataset = len(train_dataset)
step = args.start_from_epoch * len_train_dataset
for epoch in range(args.start_from_epoch+1, args.epochs+1):
print(f"Epoch {epoch}:")
with tqdm(range(len(train_dataset))) as pbar:
self.lr_schedule.step()
for i, imgs in zip(pbar, train_dataset):
imgs = imgs.to(device=args.device)
logits, target = self.model(imgs)
loss = F.cross_entropy(logits.reshape(-1, logits.size(-1)), target.reshape(-1))
loss.backward()
if step % args.accum_grad == 0:
self.optim.step()
self.optim.zero_grad()
step += 1
pbar.set_postfix(Transformer_Loss=np.round(loss.cpu().detach().numpy().item(), 4))
pbar.update(0)
self.logger.add_scalar("Cross Entropy Loss", np.round(loss.cpu().detach().numpy().item(), 4), (epoch * len_train_dataset) + i)
try:
log, sampled_imgs = self.model.log_images(imgs[0:1])
vutils.save_image(sampled_imgs.add(1).mul(0.5), os.path.join("results", f"{epoch}.jpg"), nrow=4)
plot_images(log)
except:
pass
if epoch % args.ckpt_interval == 0:
torch.save(self.model.state_dict(), os.path.join("checkpoints", f"transformer_epoch_{epoch}.pt"))
torch.save(self.model.state_dict(), os.path.join("checkpoints", "transformer_current.pt"))
def configure_optimizers(self):
# decay, no_decay = set(), set()
# whitelist_weight_modules = (nn.Linear,)
# blacklist_weight_modules = (nn.LayerNorm, nn.Embedding)
# for mn, m in self.model.transformer.named_modules():
# for pn, p in m.named_parameters():
# fpn = '%s.%s' % (mn, pn) if mn else pn # full param name
#
# if pn.endswith('bias'):
# no_decay.add(fpn)
#
# elif pn.endswith('weight') and isinstance(m, whitelist_weight_modules):
# decay.add(fpn)
#
# elif pn.endswith('weight') and isinstance(m, blacklist_weight_modules):
# no_decay.add(fpn)
#
# # no_decay.add('pos_emb')
#
# param_dict = {pn: p for pn, p in self.model.transformer.named_parameters()}
#
# optim_groups = [
# {"params": [param_dict[pn] for pn in sorted(list(decay))], "weight_decay": 4.5e-2},
# {"params": [param_dict[pn] for pn in sorted(list(no_decay))], "weight_decay": 0.0},
# ]
optimizer = torch.optim.Adam(self.model.transformer.parameters(), lr=1e-4, betas=(0.9, 0.96), weight_decay=4.5e-2)
return optimizer
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="VQGAN")
parser.add_argument('--run-name', type=str, default=None)
parser.add_argument('--latent-dim', type=int, default=32, help='Latent dimension n_z.')
parser.add_argument('--image-size', type=int, default=256, help='Image height and width.)')
parser.add_argument('--num-codebook-vectors', type=int, default=8192, help='Number of codebook vectors.')
parser.add_argument('--beta', type=float, default=0.25, help='Commitment loss scalar.')
parser.add_argument('--image-channels', type=int, default=3, help='Number of channels of images.')
parser.add_argument('--dataset-path', type=str, default='./data', help='Path to data.')
parser.add_argument('--checkpoint-path', type=str, default='./checkpoints/last_ckpt.pt', help='Path to checkpoint.')
parser.add_argument('--device', type=str, default="cuda", help='Which device the training is on.')
parser.add_argument('--batch-size', type=int, default=10, help='Batch size for training.')
parser.add_argument('--accum-grad', type=int, default=10, help='Number for gradient accumulation.')
parser.add_argument('--epochs', type=int, default=300, help='Number of epochs to train.')
parser.add_argument('--start-from-epoch', type=int, default=1, help='Number of epochs to train.')
parser.add_argument('--ckpt-interval', type=int, default=100, help='Number of epochs to train.')
parser.add_argument('--learning-rate', type=float, default=1e-4, help='Learning rate.')
parser.add_argument('--sos-token', type=int, default=1025, help='Start of Sentence token.')
parser.add_argument('--n-layers', type=int, default=24, help='Number of layers of transformer.')
parser.add_argument('--dim', type=int, default=768, help='Dimension of transformer.')
parser.add_argument('--hidden-dim', type=int, default=3072, help='Dimension of transformer.')
parser.add_argument('--num-image-tokens', type=int, default=256, help='Number of image tokens.')
args = parser.parse_args()
args.run_name = "<name>"
args.dataset_path = r"C:\Users\dome\datasets\landscape"
args.checkpoint_path = r".\checkpoints"
args.n_layers = 24
args.dim = 768
args.hidden_dim = 3072
args.batch_size = 4
args.accum_grad = 25
args.epochs = 1000
args.start_from_epoch = 0
args.num_codebook_vectors = 1024
args.num_image_tokens = 256
train_transformer = TrainTransformer(args)