-
Notifications
You must be signed in to change notification settings - Fork 77
/
Copy pathmodels.py
163 lines (122 loc) · 6.54 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
from keras.models import Sequential, Model
from keras.layers import Convolution2D,Input,BatchNormalization,Conv2D,Activation,Lambda,Subtract,Conv2DTranspose, PReLU
from keras.regularizers import l2
from keras.layers import Reshape,Dense,Flatten
# from keras.layers.advanced_activations import LeakyReLU
from keras.callbacks import ModelCheckpoint
from keras.optimizers import SGD, Adam
from scipy.io import loadmat
import keras.backend as K
# from keras.layers.advanced_activations import LeakyReLU
from keras.callbacks import ModelCheckpoint
from keras.optimizers import SGD, Adam
import numpy as np
import math
from scipy import interpolate
#from scipy.misc import imresize
def psnr(target, ref):
# assume RGB image
target_data = np.array(target, dtype=float)
ref_data = np.array(ref, dtype=float)
diff = ref_data - target_data
diff = diff.flatten('C')
rmse = math.sqrt(np.mean(diff ** 2.))
return 20 * math.log10(255. / rmse)
def interpolation(noisy , SNR , Number_of_pilot , interp)
noisy_image = np.zeros((40000,72,14,2))
noisy_image[:,:,:,0] = np.real(noisy)
noisy_image[:,:,:,1] = np.imag(noisy)
if (Number_of_pilot == 48):
idx = [14*i for i in range(1, 72,6)]+[4+14*(i) for i in range(4, 72,6)]+[7+14*(i) for i in range(1, 72,6)]+[11+14*(i) for i in range(4, 72,6)]
elif (Number_of_pilot == 16):
idx= [4+14*(i) for i in range(1, 72,9)]+[9+14*(i) for i in range(4, 72,9)]
elif (Number_of_pilot == 24):
idx = [14*i for i in range(1,72,9)]+ [6+14*i for i in range(4,72,9)]+ [11+14*i for i in range(1,72,9)]
elif (Number_of_pilot == 8):
idx = [4+14*(i) for i in range(5,72,18)]+[9+14*(i) for i in range(8,72,18)]
elif (Number_of_pilot == 36):
idx = [14*(i) for i in range(1,72,6)]+[6+14*(i) for i in range(4,72,6)] + [11+14*i for i in range(1,72,6)]
r = [x//14 for x in idx]
c = [x%14 for x in idx]
interp_noisy = np.zeros((40000,72,14,2))
for i in range(len(noisy)):
z = [noisy_image[i,j,k,0] for j,k in zip(r,c)]
if(interp == 'rbf'):
f = interpolate.Rbf(np.array(r).astype(float), np.array(c).astype(float), z,function='gaussian')
X , Y = np.meshgrid(range(72),range(14))
z_intp = f(X, Y)
interp_noisy[i,:,:,0] = z_intp.T
elif(interp == 'spline'):
tck = interpolate.bisplrep(np.array(r).astype(float), np.array(c).astype(float), z)
z_intp = interpolate.bisplev(range(72),range(14),tck)
interp_noisy[i,:,:,0] = z_intp
z = [noisy_image[i,j,k,1] for j,k in zip(r,c)]
if(interp == 'rbf'):
f = interpolate.Rbf(np.array(r).astype(float), np.array(c).astype(float), z,function='gaussian')
X , Y = np.meshgrid(range(72),range(14))
z_intp = f(X, Y)
interp_noisy[i,:,:,1] = z_intp.T
elif(interp == 'spline'):
tck = interpolate.bisplrep(np.array(r).astype(float), np.array(c).astype(float), z)
z_intp = interpolate.bisplev(range(72),range(14),tck)
interp_noisy[i,:,:,1] = z_intp
interp_noisy = np.concatenate((interp_noisy[:,:,:,0], interp_noisy[:,:,:,1]), axis=0).reshape(80000, 72, 14, 1)
return interp_noisy
def SRCNN_model():
input_shape = (72,14,1)
x = Input(shape = input_shape)
c1 = Convolution2D( 64 , 9 , 9 , activation = 'relu', init = 'he_normal', border_mode='same')(x)
c2 = Convolution2D( 32 , 1 , 1 , activation = 'relu', init = 'he_normal', border_mode='same')(c1)
c3 = Convolution2D( 1 , 5 , 5 , init = 'he_normal', border_mode='same')(c2)
#c4 = Input(shape = input_shape)(c3)
model = Model(input = x, output = c3)
##compile
adam = Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-8)
model.compile(optimizer=adam, loss='mean_squared_error', metrics=['mean_squared_error'])
return model
def SRCNN_train(train_data ,train_label, val_data , val_label , channel_model , num_pilots , SNR ):
srcnn_model = SRCNN_model()
print(srcnn_model.summary())
checkpoint = ModelCheckpoint("SRCNN_check.h5", monitor='val_loss', verbose=1, save_best_only=True,
save_weights_only=False, mode='min')
callbacks_list = [checkpoint]
srcnn_model.fit(train_data, train_label, batch_size=128, validation_data=(val_data, val_label),
callbacks=callbacks_list, shuffle=True, epochs= 300 , verbose=0)
#srcnn_model.save_weights("drive/codes/my_srcnn/SRCNN_SUI5_weights/SRCNN_48_12.h5")
srcnn_model.save_weights("SRCNN_" + channel_model +"_"+ str(num_pilots) + "_" + str(SNR) + ".h5")
def SRCNN_predict(input_data , channel_model , num_pilots , SNR):
srcnn_model = SRCNN_model()
srcnn_model.load_weights("SRCNN_" + channel_model +"_"+ str(num_pilots) + "_" + str(SNR) + ".h5")
predicted = srcnn_model.predict(input_data)
return predicted
def DNCNN_model ():
inpt = Input(shape=(None,None,1))
# 1st layer, Conv+relu
x = Conv2D(filters=64, kernel_size=(3,3), strides=(1,1), padding='same')(inpt)
x = Activation('relu')(x)
# 18 layers, Conv+BN+relu
for i in range(18):
x = Conv2D(filters=64, kernel_size=(3,3), strides=(1,1), padding='same')(x)
x = BatchNormalization(axis=-1, epsilon=1e-3)(x)
x = Activation('relu')(x)
# last layer, Conv
x = Conv2D(filters=1, kernel_size=(3,3), strides=(1,1), padding='same')(x)
x = Subtract()([inpt, x]) # input - noise
model = Model(inputs=inpt, outputs=x)
adam = Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-8)
model.compile(optimizer=adam, loss='mean_squared_error', metrics=['mean_squared_error'])
return model
def DNCNN_train(train_data ,train_label, val_data , val_label, channel_model , num_pilots , SNR ):
dncnn_model = DNCNN_model()
print(dncnn_model.summary())
checkpoint = ModelCheckpoint("DNCNN_check.h5", monitor='val_loss', verbose=1, save_best_only=True,
save_weights_only=False, mode='min')
callbacks_list = [checkpoint]
dncnn_model.fit(train_data, train_label, batch_size=128, validation_data=(val_data, val_label),
callbacks=callbacks_list, shuffle=True, epochs= 200 , verbose=0)
dncnn_model.save_weights("DNCNN_" + channel_model +"_"+ str(num_pilots) + "_" + str(SNR) + ".h5")
def DNCNN_predict(input_data, channel_model , num_pilots , SNR):
dncnn_model = DNCNN_model()
dncnn_model.load_weights("DNCNN_" + channel_model +"_"+ str(num_pilots) + "_" + str(SNR) + ".h5")
predicted = dncnn_model.predict(input_data)
return predicted