-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathkeras_lstm.py
92 lines (79 loc) · 2.94 KB
/
keras_lstm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
from music21 import*
from keras.models import Sequential
from keras.layers import Dense
from keras.layers import Dropout
from keras.layers import LSTM
from keras.layers import Activation
from keras.utils import np_utils
from keras.callbacks import ModelCheckpoint
from keras.layers import Flatten
import utildata as ud
import numpy as np
dataset = ud.loadobj('./Files/BachChords')
num_timesteps = 16
#Create input sequences and corresponding output sequences(one_hot categorical)
def get_sequences(dataset):
input_sequences = []
output_sequences = []
#Traverse each song
for song in dataset:
for i in range(0,len(song)-(num_timesteps+1),1):
timestep_set = song[i:i+num_timesteps]
temp_in = []
for something in timestep_set:
note = something[0]
time = something[len(something)-1]
temp_in.append([note,time])
input_sequences.append(temp_in)
note_out = song[i+num_timesteps][0]
time_out = song[i+num_timesteps][len(song[i+num_timesteps])-1]
output_sequences.append([note_out,time_out])
return input_sequences,output_sequences
#One-hot encode output
def one_hot(output_sequences):
return np_utils.to_categorical(output_sequences)
#Standerdize input sequences for neural net
def normalize(input_sequences,output_size):
num = len(input_sequences)
input_sequences = np.reshape(input_sequences,(num,num_timesteps,2))
normalized_input = input_sequences/float(output_size)
return normalized_input
def train_network():
input_sequences,output_sequences = get_sequences(dataset)
output_sequences = one_hot(output_sequences)
print(output_sequences)
input_sequences = normalize(input_sequences,output_sequences.shape[1])
model = create_network(input_sequences,output_sequences.shape[1])
train(model,input_sequences,output_sequences)
def create_network(network_input,output_size):
model = Sequential()
model.add(LSTM(
512,
input_shape=(network_input.shape[1],network_input.shape[2]),
return_sequences=True
))
model.add(Dropout(0.5))
model.add(LSTM(1024,return_sequences=True))
model.add(Dropout(0.5))
model.add(LSTM(1024,return_sequences=True))
model.add(Dropout(0.5))
model.add(LSTM(512))
model.add(Dense(512))
model.add(Dropout(0.5))
model.add(Dense(output_size))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy',optimizer='adam',metrics=['categorical_accuracy'])
return model
def train(model,network_input,network_output):
filepath = "./TrainingData/KERAS-LSTM/weights-{epoch:02d}-{loss:.4f}.hdf5"
checkpoint = ModelCheckpoint(
filepath,
monitor='loss',
verbose=1,
save_best_only=True,
mode='min'
)
callbacks_list = [checkpoint]
model.fit(network_input,network_output,epochs=1000,batch_size=50,callbacks=callbacks_list)
if __name__=='__main__':
train_network()