-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcompute_pairwise_ecfp4_with_counts.py
112 lines (92 loc) · 3.32 KB
/
compute_pairwise_ecfp4_with_counts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
from concurrent import futures
from glob import glob
import os
import pickle
import sys
from rdkit import Chem
from rdkit import RDLogger
from rdkit.Chem import AllChem
from rdkit.DataStructs import BulkTanimotoSimilarity
from tqdm import tqdm
import numpy as np
from lib.dataset.io import read_binary_file, read_index_binary_file_64bits
from lib.dataset.io import write_binary_file
RDLogger.DisableLog("rdApp.*")
class FingerprintCache:
def __init__(self, max_size=10000):
self.cache = {}
self.max_size = max_size
def add(self, k, smiles):
if k in self.cache:
return self.cache[k]
mol = Chem.MolFromSmiles(smiles)
fp = AllChem.GetMorganFingerprint(mol, 2)
if len(self.cache) == self.max_size:
self.cache.popitem()
self.cache[k] = fp
return fp
def __getitem__(self, k):
return self.cache[k]
def __contains__(self, k):
return k in self.cache
def _compute_ecfp4_wc(args):
smiles = args["smiles"]
dat_paths = args["dat_paths"]
output_path = args["output_path"]
progress_bar = args["progress_bar"]
pid = args["pid"]
fp_cache = FingerprintCache()
if progress_bar:
pbar = tqdm(dat_paths, ascii=True)
else:
pbar = dat_paths
for dat_path in dat_paths:
idx = read_index_binary_file_64bits(dat_path)
data = {}
for ik, k in enumerate(idx):
fname, pos = idx[k]
binary_file_path = os.path.join(os.path.dirname(dat_path), fname + ".dat")
pubchem_id, pubchem_id_neighs, _ = read_binary_file(binary_file_path, pos)
fp = fp_cache.add(pubchem_id, smiles[pubchem_id])
fps = []
for pin in pubchem_id_neighs:
fps.append(fp_cache.add(pin, smiles[pin]))
if len(fps) > 0:
t = np.array(BulkTanimotoSimilarity(fp, fps)).astype(np.float32)
tidx = t >= 0.5
if tidx.sum() > 0:
T = t[tidx]
V = pubchem_id_neighs[tidx]
data[pubchem_id] = [V, T]
if progress_bar:
pbar.set_description(f"File={fname} - Processing={ik+1:d}/{len(idx):d}")
if len(data) > 0:
write_binary_file(data, os.path.join(output_path, fname + ".dat"))
return {"pid": pid, "status": True}
if __name__ == "__main__":
dataset_path = sys.argv[1]
ecfp4_path = sys.argv[2]
opath = sys.argv[3]
os.makedirs(opath, exist_ok=True)
n_proc = int(sys.argv[4])
smiles = pickle.load(open(dataset_path, "rb"))
smiles = {pubchem_id: std_smi for _, pubchem_id, std_smi in smiles}
dat_paths = glob(os.path.join(ecfp4_path, "*.index.dat"))
n_proc = min(n_proc, len(dat_paths))
n_proc = min(n_proc, os.cpu_count())
split_dat_paths = np.array_split(dat_paths, n_proc)
data_pool = []
for pid, dp in enumerate(split_dat_paths):
data_pool.append(
{
"smiles": smiles,
"dat_paths": dp,
"output_path": opath,
"progress_bar": pid == 0,
"pid": pid,
}
)
pool = futures.ProcessPoolExecutor(max_workers=n_proc)
results = list(pool.map(_compute_ecfp4_wc, data_pool))
results = sorted(results, key=lambda x: x["pid"])
print(results)