-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmake_table_2.py
222 lines (188 loc) · 7.42 KB
/
make_table_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
from functools import partial
from glob import glob
from time import time
import os
import pickle
import subprocess
import sys
import yaml
import json
from natsort import natsorted
from rdkit import Chem
from rdkit import RDLogger
from rdkit.Chem import AllChem
from rdkit.DataStructs import BulkTanimotoSimilarity
from scipy.stats import pearsonr, kendalltau
from tqdm import tqdm
import numpy as np
import pandas as pd
import torch
from lib.dataset.chem import standardize_smiles
from lib.dataset.pair_dataset import FastPairedDataset
from lib.model.model import LitMolformer
from lib.model.sample import sample as sample_from_model
RDLogger.DisableLog("rdApp.*")
class Similarity:
def __init__(self, similarity_type=None):
assert similarity_type in ["ae", "tan"]
self.similarity_type = similarity_type
def compute_similarity(self, source, targets):
if self.similarity_type == "ae":
res = subprocess.run(
["utils/compute_similarity_gan_drug_generator.sh"] + [source] + targets,
capture_output=True,
)
sims = [float(s) for s in res.stdout.decode().strip().split()]
else:
source_mol = Chem.MolFromSmiles(source)
target_mols = [Chem.MolFromSmiles(target) for target in targets]
source_fp = AllChem.GetMorganFingerprint(source_mol, radius=2)
target_fps = [
AllChem.GetMorganFingerprint(target_mol, radius=2)
for target_mol in target_mols
if target_mol is not None
]
sims = BulkTanimotoSimilarity(source_fp, target_fps)
return np.array(sims, dtype=np.float32)
def load_model(config_path, checkpoint_path, vocabulary_path, device="cuda"):
hparams = yaml.load(open(config_path), Loader=yaml.FullLoader)
hparams["vocabulary"] = vocabulary_path
model = LitMolformer(**hparams)
state_dict = torch.load(checkpoint_path, map_location="cpu")["state_dict"]
model.load_state_dict(state_dict)
model = model.eval().to(device)
return model
def generate_samples(model, smiles, beam_size=1000):
# smiles = standardize_smiles(smiles)
src = model.vocabulary.encode(model.tokenizer.tokenize(smiles))
src = torch.from_numpy(src.astype(np.int64))
src, src_mask, _, _, _ = FastPairedDataset.collate_fn(
[(src, src, torch.ones((1, 1)))]
)
samples = sample_from_model(
model,
src[:1],
src_mask[:1],
decode_type="beamsearch",
beam_size=beam_size,
beam_search_bs=512,
)
return samples
def aggregate_same_similarity(sim, ll):
sim_ll = {}
for s, l in zip(sim, ll):
if s not in sim_ll:
sim_ll[s] = []
sim_ll[s].append(l)
for s in sim_ll:
sim_ll[s] = np.mean(sim_ll[s])
sim = np.array([x[0] for x in list(sim_ll.items())])
ll = np.array([x[1] for x in list(sim_ll.items())])
idx = np.argsort(sim)[::-1]
sim = sim[idx]
ll = ll[idx]
return sim, ll
def compute_stats_v2(
model, similarity, smi, samples=None, similarities=None, beam_size=100
):
if similarities is None:
samples = generate_samples(model, smi, beam_size)
# filter out invalid_smiles
valid_samples, nlls = [], []
for sample, nll in zip(samples[1][:100], samples[2][:100]):
try:
if Chem.MolFromSmiles(sample) is not None:
valid_samples.append(sample)
nlls.append(nll)
except BaseException:
pass
if len(valid_samples) == 0:
return None
nlls = np.array(nlls, dtype=np.float32)
lls = -nlls
if similarities is None:
tans = similarity.compute_similarity(smi, valid_samples)
else:
tans = similarities[:100]
if len(tans) == 0:
return None
idx = np.argsort(lls)[::-1]
rank_lls = lls[idx[:10]]
rank_sims = tans[idx[:10]]
rank_10 = kendalltau(rank_sims, rank_lls).statistic
agg_tans, agg_lls = aggregate_same_similarity(tans, lls)
try:
correlation = pearsonr(agg_tans, agg_lls).statistic
except BaseException:
return None
unique_samples = []
unique_canonicalized = []
unique_no_stereo = []
for vs in valid_samples:
if vs not in unique_samples:
unique_samples.append(vs)
std_vs = standardize_smiles(vs)
if std_vs is not None and std_vs not in unique_canonicalized:
unique_canonicalized.append(std_vs)
mol = Chem.MolFromSmiles(std_vs)
Chem.RemoveStereochemistry(mol)
std_no_stereo_vs = standardize_smiles(Chem.MolToSmiles(mol))
if (
std_no_stereo_vs is not None
and std_no_stereo_vs not in unique_no_stereo
):
unique_no_stereo.append(std_no_stereo_vs)
mol = Chem.MolFromSmiles(smi)
Chem.RemoveStereochemistry(mol)
smi_no_stereo = standardize_smiles(Chem.MolToSmiles(mol))
return {
"n_samples": beam_size,
"valid": len(valid_samples),
"unique": len(unique_samples),
"unique_canonicalized": len(unique_canonicalized),
"unique_no_stereo": len(unique_no_stereo),
"top": valid_samples[0] == smi,
"top_canonicalized": unique_canonicalized[0] == smi,
"top_no_stereo": unique_no_stereo[0] == smi_no_stereo,
"rank_10": rank_10,
"correlation": correlation,
}
if __name__ == "__main__":
# PARAMS
for model_name in [
"rnn_ae_wr_chembl",
"rnn_ae_nr_chembl",
"tra_ae_wr_chembl",
"tra_ae_nr_chembl",
]:
config_path = f"results/{model_name}/config.yml"
checkpoint_path = f"results/{model_name}/chkpts/epoch=29-*.ckpt"
checkpoint_path = natsorted(glob(checkpoint_path))[-1]
vocabulary_path = "cache/chembl/vocabulary.pkl"
device = "cuda"
model = load_model(config_path, checkpoint_path, vocabulary_path, device)
similarity = Similarity(model_name.split("_")[1])
print(checkpoint_path)
test = pickle.load(open("data/chembl/test.pkl", "rb"))
smiles = sorted(list(set([x[0] for x in test])))
smiles = [
smiles[i] for i in np.arange(0, len(smiles), len(smiles) // 1000)[:1000]
]
all_res = []
for smi in tqdm(smiles):
res = compute_stats_v2(model, similarity, smi, beam_size=100)
if res:
all_res.append(res)
all_res_json = {
"valid": f'{np.mean([k["valid"]/k["n_samples"] for k in all_res]):.2f}',
"unique": f'{np.mean([k["unique"]/k["valid"] for k in all_res]):.2f}',
"unique_canonicalized": f'{np.mean([k["unique_canonicalized"]/k["valid"] for k in all_res]):.2f}',
"unique_no_stereo": f'{np.mean([k["unique_no_stereo"]/k["valid"] for k in all_res]):.2f}',
"top": f'{np.mean([k["top"] for k in all_res]):.2f}',
"top_canonicalized": f'{np.mean([k["top_canonicalized"] for k in all_res]):.2f}',
"top_no_stereo": f'{np.mean([k["top_no_stereo"] for k in all_res]):.2f}',
"rank_10": f'{np.nanmean([k["rank_10"] for k in all_res]):.2f}±{np.nanstd([k["rank_10"] for k in all_res]):.2f}',
"correlation": f'{np.nanmean([k["correlation"] for k in all_res]):.2f}±{np.nanstd([k["correlation"] for k in all_res]):.2f}',
}
with open(f"results/stats/{model_name}.json", "w") as out_file:
json.dump(all_res_json, out_file, indent=4)