-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
113 lines (96 loc) · 3.47 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import os
import pickle
import sys
from lightning.pytorch.callbacks import EarlyStopping, ModelCheckpoint
from lightning.pytorch.strategies.ddp import DDPStrategy
import numpy as np
import lightning as pl
import torch
import yaml
from lib.dataset.pair_dataset import PairedDataset
from lib.model.model import LitMolformer
if __name__ == "__main__":
hparams = yaml.load(open(sys.argv[1]), Loader=yaml.FullLoader)
with open(hparams["vocabulary"], "rb") as ifile:
vocabulary = pickle.load(ifile)
smiles_id_to_data = np.load(hparams["smiles_id_to_data"])
smiles_id_to_encoded_data = np.load(hparams["smiles_id_to_encoded_smiles"])
np.random.seed(1234)
idx = np.where(smiles_id_to_encoded_data > -1)[0]
np.random.shuffle(idx)
test_idx = idx[:2000]
valid_idx = idx[2000:4000]
train_idx = idx[4000:]
exclude_idx = np.zeros(max(idx) + 1, dtype=bool)
exclude_idx[test_idx] = True
exclude_idx[valid_idx] = True
checkpoint_path = sys.argv[2]
os.makedirs(os.path.join(checkpoint_path, "chkpts"), exist_ok=True)
print(f"All the checkpoints will be saved in: {checkpoint_path}")
with open(os.path.join(checkpoint_path, "config.yml"), "w") as yf:
yaml.dump(hparams, yf)
model = LitMolformer(**hparams)
vocabulary = model.vocabulary
tokenizer = model.tokenizer
print("Saving validation set")
np.save(os.path.join(checkpoint_path, "valid_paths.npy"), valid_idx)
print("Saving test set")
np.save(os.path.join(checkpoint_path, "test_paths.npy"), test_idx)
train_dataset = PairedDataset(
train_idx,
hparams["pairs_path"],
smiles_id_to_data,
excluded_idx=exclude_idx,
encoded_smiles_path=hparams["encoded_smiles"],
smiles_id_to_encoded_data=smiles_id_to_encoded_data,
no_swap=False,
max_length=hparams["max_sequence_length"],
)
train_dataloader = torch.utils.data.DataLoader(
train_dataset,
batch_size=128,
shuffle=True,
drop_last=True,
collate_fn=PairedDataset.collate_fn,
num_workers=4,
persistent_workers=True,
)
valid_dataset = PairedDataset(
valid_idx,
hparams["pairs_path"],
smiles_id_to_data,
excluded_idx=np.zeros_like(exclude_idx),
encoded_smiles_path=hparams["encoded_smiles"],
smiles_id_to_encoded_data=smiles_id_to_encoded_data,
no_swap=True,
max_length=hparams["max_sequence_length"],
)
valid_dataloader = torch.utils.data.DataLoader(
valid_dataset,
batch_size=128,
shuffle=False,
drop_last=False,
collate_fn=PairedDataset.collate_fn,
num_workers=1,
persistent_workers=True,
)
early_stopping_cp = EarlyStopping(
monitor="valid_loss", min_delta=0.00, patience=200, verbose=True, mode="min"
)
callback_cp = ModelCheckpoint(
dirpath=os.path.join(checkpoint_path, "chkpts"),
save_top_k=100,
monitor="valid_loss",
)
trainer = pl.Trainer(
accelerator="gpu",
devices=int(sys.argv[3]),
max_epochs=5000,
log_every_n_steps=1,
callbacks=[early_stopping_cp, callback_cp],
strategy=DDPStrategy(find_unused_parameters=False),
)
trainer.fit(model, train_dataloader, valid_dataloader)
# To restart the training add:
# , ckpt_path="results/ecfp4/chkpts/epoch=4-step=499650.ckpt")
trainer.save_checkpoint(os.path.join(checkpoint_path, "chkpts", "last.ckpt"))