forked from uw-biomedical-ml/irf-segmenter
-
Notifications
You must be signed in to change notification settings - Fork 0
/
run.py
executable file
·184 lines (148 loc) · 6.95 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
#!/usr/bin/env python
# Copyright Aaron Lee, University of Washington 2017
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
from keras.models import Model
from keras.layers import Input, merge, Convolution2D, MaxPooling2D, UpSampling2D
from keras.layers.core import Lambda
from keras.models import load_model
import sys
import numpy as np
from PIL import Image
import tensorflow as tf
import matplotlib
import matplotlib.pyplot as plt
from keras import backend as K
K.set_image_dim_ordering('th') # Theano dimension ordering in this code
import cv2
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--mode', default="mask_blend", type=str, help="Output mode, 'mask_blend' (default) for masked heatmap output, 'mask' for binary mask output, 'blend' for blended heatmap" )
parser.add_argument('input_file', help='Input PNG file')
parser.add_argument('output_file', help='Output PNG file')
args = parser.parse_args()
if not (args.mode == "mask_blend" or args.mode == "blend" or args.mode == "mask"):
print("Invalid mode: %s" % args.mode)
sys.exit()
modelfile = 'weights.hdf5'
image_rows = 432
image_cols = 32
def make_parallel(model, gpu_count):
def get_slice(data, idx, parts):
shape = tf.shape(data)
size = tf.concat(0, [ shape[:1] // parts, shape[1:] ])
stride = tf.concat(0, [ shape[:1] // parts, shape[1:]*0 ])
start = stride * idx
return tf.slice(data, start, size)
outputs_all = []
for i in range(len(model.outputs)):
outputs_all.append([])
for i in range(gpu_count):
with tf.device('/gpu:%d' % i):
with tf.name_scope('tower_%d' % i) as scope:
inputs = []
for x in model.inputs:
input_shape = tuple(x.get_shape().as_list())[1:]
slice_n = Lambda(get_slice, output_shape=input_shape, arguments={'idx':i,'parts':gpu_count})(x)
inputs.append(slice_n)
outputs = model(inputs)
if not isinstance(outputs, list):
outputs = [outputs]
for l in range(len(outputs)):
outputs_all[l].append(outputs[l])
with tf.device('/cpu:0'):
return Model(input=model.inputs, output=outputs)
def get_unet():
inputs = Input((1, image_rows, image_cols))
conv1 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(inputs)
conv1 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(pool1)
conv2 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(pool2)
conv3 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(pool3)
conv4 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(conv4)
pool4 = MaxPooling2D(pool_size=(2, 2))(conv4)
conv5 = Convolution2D(512, 3, 3, activation='relu', border_mode='same')(pool4)
conv5 = Convolution2D(512, 3, 3, activation='relu', border_mode='same')(conv5)
up6 = merge([UpSampling2D(size=(2, 2))(conv5), conv4], mode='concat', concat_axis=1)
conv6 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(up6)
conv6 = Convolution2D(256, 3, 3, activation='relu', border_mode='same')(conv6)
up7 = merge([UpSampling2D(size=(2, 2))(conv6), conv3], mode='concat', concat_axis=1)
conv7 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(up7)
conv7 = Convolution2D(128, 3, 3, activation='relu', border_mode='same')(conv7)
up8 = merge([UpSampling2D(size=(2, 2))(conv7), conv2], mode='concat', concat_axis=1)
conv8 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(up8)
conv8 = Convolution2D(64, 3, 3, activation='relu', border_mode='same')(conv8)
up9 = merge([UpSampling2D(size=(2, 2))(conv8), conv1], mode='concat', concat_axis=1)
conv9 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(up9)
conv9 = Convolution2D(32, 3, 3, activation='relu', border_mode='same')(conv9)
conv10 = Convolution2D(1, 1, 1, activation='sigmoid')(conv9)
model = Model(input=inputs, output=conv10)
return model
model = get_unet()
model = make_parallel(model, 1)
model.load_weights(modelfile)
params = []
with open("params.txt") as fin:
for l in fin:
arr = l.rstrip().split("\t")
params.append(np.float32(arr[1]))
pngfile = args.input_file
img = cv2.imread(pngfile, cv2.IMREAD_GRAYSCALE)
img = np.array([img])
imgori = np.copy(img)
imgori = imgori.reshape((img.shape[1], img.shape[2]))
ji = Image.fromarray(imgori)
img = img.astype('float32')
img -= params[0] # subtract by mean, divide by SD
img /= params[1]
totaloutput = np.zeros((img.shape[1], img.shape[2], 32))
for dx in range(0, img.shape[2] - 32):
imgs = img[0, 0:image_rows, dx:image_cols+dx]
imgs = imgs.reshape(( 1, image_rows,image_cols))
imgsbatch = np.zeros((1, 1, image_rows,image_cols))
imgsbatch[0] = imgs
output = model.predict(imgsbatch, batch_size=1) # inference step
for x in range(0, image_rows):
for y in range(0, image_cols):
totaloutput[x,dx + y,dx % 32] = output[0,0,x,y]
totaloutput = np.mean(totaloutput, 2)
if (args.mode == "mask"):
# for binary masks
mask = (totaloutput > 0.5)
mask = np.uint8(mask)
mask *= 255
mask = Image.fromarray(mask)
mask.save(args.output_file)
elif (args.mode == "mask_blend"):
# for masked heatmap overlay
mask = (totaloutput < 0.5)
mask = np.uint8(mask)
mask *= 255
mask = Image.fromarray(mask)
my_cm = matplotlib.cm.get_cmap('jet')
mapped_data = my_cm(totaloutput, bytes=True)
j = Image.fromarray(mapped_data).convert('RGBA')
ji = ji.convert("RGBA")
Image.composite(ji, j,mask).save(args.output_file)
elif (args.mode == "blend"):
# for blend overlay
my_cm = matplotlib.cm.get_cmap('jet')
mapped_data = my_cm(totaloutput, bytes=True)
j = Image.fromarray(mapped_data).convert('RGBA')
ji = ji.convert("RGBA")
Image.blend(ji, j,0.2).save(args.output_file)