-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbase_models.py
476 lines (371 loc) · 15.3 KB
/
base_models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
# Adapted from
# https://github.com/youralien/affinder-search/blob/4dd427c98c98533b0550c3d484fba55d75f39818/yelp_academic_etl_training.py
# Author youralien
import math
import os
import string
import re
import io
import numpy as np
import pickle
import pymysql.cursors
from sklearn.feature_extraction.text import ENGLISH_STOP_WORDS, TfidfVectorizer
from nltk.stem import PorterStemmer
import matplotlib.pyplot as plt
from collections import Counter
'''
'''
connection = pymysql.connect(host='127.0.0.1',
user='root',
port=3306, # check out the port number
password='Jiayi-MySQL', # your password
db='yelp', # database name
cursorclass=pymysql.cursors.DictCursor)
def all_states():
cursor = connection.cursor()
query = "SELECT DISTINCT business.State FROM business"
cursor.execute(query)
states = [state[0] for state in cursor]
'''
os.mkdir('reviewtext/state')
os.mkdir('reviewtext/city')
for state in states:
path1 = 'reviewtext/state' + '/' + state
path2 = 'reviewtext/city' + '/' + state
os.mkdir(path1)
os.mkdir(path2)
os.mkdir('tfidf/state')
os.mkdir('tfidf/city')
for state in states:
path1 = 'tfidf/state' + '/' + state
path2 = 'tfidf/city' + '/' + state
os.mkdir(path1)
os.mkdir(path2)
'''
cursor.close()
return states
def get_cities():
cursor = connection.cursor()
cities = {}
states = all_states()
query = ("SELECT DISTINCT business.City FROM business "
"WHERE business.State=%s")
for state in states:
cursor.execute(query, state)
cities[state] = [city[0] for city in cursor]
'''
for city in cities[state]:
path = 'reviewtext/city' + '/' + state + '/' + city.replace('/', '-')
os.mkdir(path)
for city in cities[state]:
path = 'tfidf/city' + '/' + state + '/' + city.replace('/', '-')
os.mkdir(path)
'''
cursor.close()
return cities
all_cities = get_cities()
def get_categories():
categories_cities = {}
categories_states = {}
cursor = connection.cursor()
states = all_states()
query_state = ("SELECT DISTINCT Category_name "
"FROM category "
"INNER JOIN business "
"ON category.Business_id=business.Business_id "
"WHERE business.State=%s")
for state in states:
cursor.execute(query_state, state)
categories_states[state] = [cat[0] for cat in cursor]
query_city = ("SELECT DISTINCT Category_name "
"FROM category "
"INNER JOIN business "
"ON category.Business_id=business.Business_id "
"WHERE business.State=%s AND business.City=%s")
for state in states:
cur_state = {}
for city in all_cities[state]:
cursor.execute(query_city, (state, city))
cur_state[city] = [cat[0] for cat in cursor]
categories_cities[state] = cur_state
cursor.close()
return categories_states, categories_cities
categories_of_state, categories_of_city = get_categories()
def stemmer(text):
ps = PorterStemmer()
return ps.stem(text)
stop_words = [stemmer(i)[0] for i in ENGLISH_STOP_WORDS]
def preprocessor(text):
pattern = r"[^A-Za-z\s'-]+"
return stemmer(re.sub(pattern, "", text))
def cat2doc(state, cat, flag='state', city=None):
"""Sushi Bars -> Sushi Bars.txt
From Category to Document filepath """
path = "reviewtext/%s/%s" % (flag, state)
if flag == 'city' and city is not None:
# some city name somehow contains slashes for example Wayne/Radnor in PA.
path = path + '/' + city.replace('/', '-')
path = path + '/' + cat.replace('/', '-')
return path + '.txt'
def cats2docs(state, categories, flag='state', city=None):
if isinstance(categories, str):
categories = (categories, )
if flag == 'city':
return [cat2doc(state, cat, flag, city) for cat in categories]
return [cat2doc(state, cat, flag) for cat in categories]
def write_document(cursor, state, cat, flag='state', city=None):
""" Given a yelp category, build out a text document
which has all the reviews for that category """
if flag == 'city':
n_encoding_errors = 0
n_review = 0
query = ("SELECT Content "
f"FROM {state.replace('N','Z')+city.translate(str.maketrans('', '', string.punctuation)).replace(' ','').replace('n','z').replace('N','Z')} "
"INNER JOIN category "
f"ON {state.replace('N','Z')+city.translate(str.maketrans('', '', string.punctuation)).replace(' ','').replace('n','z').replace('N','Z')}.B_id = category.Business_id "
"WHERE category.Category_name=%s")
# print(query)
cursor.execute(query, cat)
with io.open(cat2doc(state, cat, flag, city), 'w', encoding='utf8') as f:
for text, in cursor:
try:
if text is not None:
f.write(text)
f.write("\n")
except UnicodeEncodeError:
n_encoding_errors += 1
n_review += 1
return n_encoding_errors, n_review
query = ("SELECT review.Content "
"FROM review "
"INNER JOIN (business "
"INNER JOIN category "
"ON business.Business_id = category.Business_id) "
"ON review.B_id = business.Business_id "
"WHERE business.State=%s AND category.Category_name=%s")
cursor.execute(query, (state, cat))
n_encoding_errors = 0
n_review = 0
with io.open(cat2doc(state, cat, flag), 'w', encoding='utf8') as f:
for text, in cursor:
try:
f.write(text)
f.write("\n")
except UnicodeEncodeError:
n_encoding_errors += 1
n_review += 1
return n_encoding_errors, n_review
def document_text_iterator(state, categories, flag='state', city=None):
for filepath in cats2docs(state, categories, flag, city):
with io.open(filepath, 'r', encoding='utf8') as f:
yield f.read()
def prepare_document_names(cat_of_setting, flag='state'):
result = []
if flag == 'state':
states = all_states()
for state in states:
categories = cat_of_setting[state]
for filepath in cats2docs(state, categories, flag):
result.append(filepath)
if flag == 'city':
states = all_states()
candidate_cities = non_empty_cities()
for state in states:
cites = candidate_cities[state]
for city in cites:
categories = cat_of_setting[state][city]
for filepath in cats2docs(state, categories, flag, city):
result.append(filepath)
return result
def sql2txt(states, flag='state'):
cursor = connection.cursor()
if isinstance(states, str):
states = (states, )
if flag == 'state':
for state in states:
categories = categories_of_state[state]
for cat in categories:
n_errors, n_total = write_document(cursor, state, cat, flag)
print("%s: %d errors, %d total" % (state, n_errors, n_total))
elif flag == 'city':
for state in states:
create_temp_state = (f"CREATE TEMPORARY TABLE {state.replace('N','Z')} AS "
"SELECT review.B_id, review.Content, business.City "
"FROM review "
"INNER JOIN business "
"ON review.B_id = business.Business_id "
"WHERE business.State=%s")
# print(create_temp_state, state)
cursor.execute(create_temp_state, state)
cities = all_cities[state]
for city in cities:
# .replace(' ', 'S').replace('-', 'W').replace(',', 'C').replace('.', 'P')
create_temp_city = (f"CREATE TEMPORARY TABLE IF NOT EXISTS {state.replace('N','Z')+city.translate(str.maketrans('', '', string.punctuation)).replace(' ','').replace('n','z').replace('N','Z')} AS "
"SELECT B_id, Content "
f"FROM {state.replace('N','Z')} "
"WHERE City=%s")
print(create_temp_city)
cursor.execute(create_temp_city, city)
categories = categories_of_city[state][city]
for cat in categories:
n_errors, n_total = write_document(cursor, state, cat, flag, city)
print("%s: %d errors, %d total" % (state, n_errors, n_total))
else:
print('unknown flag')
cursor.close()
def create_all_documents(flag='state'):
states = all_states()
# print("Creating %d documents" % len(cats))
sql2txt(states, flag)
def vectorize_sklearn(cats_of_setting, flag='state'):
# should I use the vocabulary from something like fasttext?
vect = TfidfVectorizer(input='filename', preprocessor=preprocessor, tokenizer=None,
vocabulary=None, token_pattern=r"[A-Za-z'-]+", stop_words=stop_words)
document_names = prepare_document_names(cats_of_setting, flag)
X = vect.fit_transform(document_names)
vocabulary = vect.get_feature_names_out()
return X, vocabulary
def save_pickle(matrix, filename):
with open(filename, 'wb') as outfile:
pickle.dump(matrix, outfile, pickle.HIGHEST_PROTOCOL)
def compute_and_save(threshold=1000, flag='state'):
dir_path = 'tfidf/matrix_%s_%d/' % (flag, threshold)
matrix_path = dir_path + '%s.mtx' % flag
features_path = dir_path + '%s-features' % flag
states_filtered, cities_filtered = get_categories_with_enough_reviews(threshold)
cats_of_setting = states_filtered if flag == 'state' else cities_filtered
X, vocabulary = vectorize_sklearn(cats_of_setting, flag)
save_pickle(X, matrix_path)
document_names = prepare_document_names(cats_of_setting, flag)
np.savez_compressed(features_path, document_names=document_names, vocabulary=vocabulary)
print(flag+' finished!')
def check_non_empty(state, city):
my_path = "reviewtext/city/%s/%s" % (state, city.replace('/', '-'))
for file in os.listdir(my_path):
if file.endswith(".txt"):
# print(os.path.join(my_path, file))
text_path = os.path.join(my_path, file)
with open(text_path) as f:
lines = f.readlines()
for line in lines:
if len(line) > 1:
return True
return False
def non_empty_cities():
new_dict = {}
for state in all_cities.keys():
new_dict[state] = [city for city in all_cities[state] if check_non_empty(state, city)]
return new_dict
def get_review_distribution():
states = all_states()
size_list = []
for state in states:
my_path = "reviewtext/state/%s" % state
for file in os.listdir(my_path):
if file.endswith(".txt"):
text_path = os.path.join(my_path, file)
size_list.append(int(os.path.getsize(text_path)/6))
print('median', np.median(size_list))
print('upper', np.percentile(size_list, 75))
print('lower', np.percentile(size_list, 25))
log_size = [math.log10(e) for e in size_list]
plt.boxplot(log_size)
plt.show()
'''
log_size = [int(math.log10(e)) for e in size_list]
C = Counter(log_size)
plt.bar(C.keys(), C.values())
plt.title('distribution of review size (state)')
plt.xlabel("log10 word count")
plt.ylabel("file count")
plt.show()
'''
size_list = []
cities_dict = non_empty_cities()
for state in states:
cities = cities_dict[state]
for city in cities:
my_path = "reviewtext/city/%s/%s" % (state, city.replace('/', '-'))
for file in os.listdir(my_path):
if file.endswith(".txt"):
text_path = os.path.join(my_path, file)
size_list.append((int(os.path.getsize(text_path)+1) / 6))
print('median', np.median(size_list))
print('upper', np.percentile(size_list, 75))
print('lower', np.percentile(size_list, 25))
log_size = [math.log10(e) for e in size_list]
plt.boxplot(log_size)
plt.show()
'''
C2 = Counter(log_size)
plt.bar(C2.keys(), C2.values())
plt.title('distribution of review size (city)')
plt.xlabel("log10 word count")
plt.ylabel("file count")
plt.show()
'''
def is_good_category(path,threshold=1000):
return os.path.getsize(path) > threshold*6
def get_categories_with_enough_reviews(threshold=1000):
states = all_states()
cities_dict = non_empty_cities()
good_categories_state = {}
good_categories_city = {}
for state in states:
good_categories_state[state] = [cat for cat in categories_of_state[state] if is_good_category(cat2doc(state, cat),threshold)]
for state in states:
temp_dict = {}
for city in cities_dict[state]:
temp_dict[city] = [cat for cat in categories_of_city[state][city] if is_good_category(cat2doc(state, cat, 'city', city),threshold)]
good_categories_city[state] = temp_dict
'''
size_list = []
for state in states:
for cat in good_categories_state[state]:
size_list.append(int(os.path.getsize(cat2doc(state, cat)))/6)
log_size = [int(math.log10(e)) for e in size_list]
C = Counter(log_size)
plt.bar(C.keys(), C.values())
plt.title('distribution of review size (state)')
plt.xlabel("log10 word count")
plt.ylabel("file count")
plt.show()
'''
return good_categories_state, good_categories_city
def save_states():
states = all_states()
np.savez_compressed('tfidf/state-meta', states=states)
def save_cities():
candidate_cities = non_empty_cities()
np.savez_compressed('tfidf/city-meta', all_cities=candidate_cities)
def save_categories():
np.savez_compressed('tfidf/category-meta', categories_of_state=categories_of_state, categories_of_city=categories_of_city)
def save_good_categories(threshold=1000):
file_name = f'tfidf/good-category-meta-%d' % threshold
good_categories_state, good_categories_city = get_categories_with_enough_reviews(threshold)
np.savez_compressed(file_name, good_categories_of_state=good_categories_state,
good_categories_of_city=good_categories_city)
if __name__ == '__main__':
'''
'''
# categories = ('Sushi Bars',
# 'Bikes',
# 'Dance Clubs')
create_all_documents(flag='state')
# create_all_documents(flag='city')
#compute_and_save('state')
#compute_and_save('city')
#save_categries()
#save_states()
#save_cities()
#get_review_distribution()
#get_categories_with_enough_reviews()
#save_good_categories(3719)
#save_good_categories()
#compute_and_save(1000, 'state')
#compute_and_save(1000, 'city')
# compute_and_save(0, 'state')
#print('Y')
# check_non_empty('PA', 'West Norriton')
#print(categories_of_city['IL']['Chicago'])
connection.close()