-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNWChem_tutorial.tex
869 lines (838 loc) · 28.3 KB
/
NWChem_tutorial.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
\documentclass[11pt]{beamer}
\usepackage[english]{babel}
\usepackage{pgf}
\usepackage{amsmath,amssymb,wasysym}
\usepackage[latin1]{inputenc}
\usepackage{multirow}
\usepackage{graphicx}
\usepackage{ulem}
\usepackage{color}
\usepackage{hyperref}
% \usepackage{listings}
\mode<presentation>
{
\useinnertheme{rectangles}
\useoutertheme{split}
\setbeamerfont{block title}{size={}}
\usefonttheme{structurebold}
\usecolortheme{Argonne}
\setbeamercovered{transparent}
}
\pgfdeclareimage[width=3.0cm]{crest-logo}{ANL_V_White}
% \pgfdeclareimage[width=3.0cm]{crest-logo}{anl_logo2}
% \pgfdeclareimage[width=4.5cm]{crest-logo}{bgq-big}
% \pgfdeclareimage[width=4.5cm]{crest-logo}{images/merged-logos}
\titlegraphic{
\pgfuseimage{crest-logo}
}
\title[NWChem Overview]{NWChem Overview}
\author[Jeff Hammond]{Jeff Hammond}
\institute[Argonne]{Leadership Computing Facility \\ Argonne National Laboratory}
\date[16 Nov 2011]{16 November 2011}
\definecolor{dgreen}{RGB}{0,150,0}
\definecolor{dred}{RGB}{200,0,0}
\begin{document}
\frame{\titlepage}
\begin{frame}{NWChem 6.0 Overview} \Large
\begin{itemize}
\item \textbf{Open Source License:} \href{http://www.opensource.org/licenses/ecl2.php}{ECL 2.0} --- Apache 2.0 with patent modifications for academic users.
\item \textbf{Wiki:} \href{http://www.nwchem-sw.org}{http://www.nwchem-sw.org}
\item \textbf{Capability:} The most diverse collection of quantum chemical methodology of any code. Notable missing features: TDDFT and CC analytic gradients.
\item \textbf{Portability:} Runs on laptops/workstations (Linux, Mac and Cygwin), clusters (e.g. Fusion) and supercomputers (e.g. Intrepid and Jaguar).
\end{itemize}
\end{frame}
\begin{frame}{Prerequisites} \Large
Required:
\begin{itemize}
\item \textbf{Software:} \\ GNU/Linux environment or equivalent.
\item \textbf{Hardware:} \\ A real computer (not a cell phone).
\end{itemize}
\vskip2ex
If you want performance:
\begin{itemize}
\item \textbf{Software:} \\ MPI, BLAS, LAPACK, ScaLAPACK.
\item \textbf{Hardware:} \\ Infiniband cluster or supercomputer.
\end{itemize}
\end{frame}
\begin{frame}{Why Use NWChem?} \Large
\begin{itemize}
\item \textbf{Open Source:} Modify the code as needed.
\item \textbf{Free:} Use anywhere.
\item \textbf{Scalable:} No need to switch codes from laptop to supercomputer.
\item \textbf{Functionality:} No need to use $N$ codes for 1 project.
\item \textbf{Support:} Responsive developers and user community via \href{mailto:[email protected]}{[email protected]}.
\item \textbf{Potential:} Actively developed by multiple DOE labs and user community.
\end{itemize}
\end{frame}
\begin{frame}{} \LARGE
\begin{center}
\textbf{NWChem Highlight Reel}
\end{center}
\end{frame}
\begin{frame}{Largest Coupled-cluster Excited-state Calculation} \Large
\begin{figure}
\includegraphics[scale=0.27,angle=0]{p2ta.png}
\end{figure}
\begin{center}\begin{tiny}
\href{http://link.aip.org/link/JCPSA6/v132/i15/p154103/s1}{\textit{J. Chem. Phys.} \textbf{132}, 154103 (2010)}.
\end{tiny}\end{center}
\end{frame}
\begin{frame}{Charge-transfer Excited-states of Biomolecules} \Large
\begin{normalsize}
CR-EOMCCSD(T)/6-31G* --- 1 hour on 256 cores
\end{normalsize}
\begin{figure}
\includegraphics[scale=0.3,angle=0]{ANEPPS_scf_6-31pGs_orbitals-105-106.png}
\end{figure}
\begin{center}\begin{tiny}
Joint work with Karol Kowalski (PNNL) and Beno\^{\i}t Roux (UC/Argonne).
\end{tiny}\end{center}
\end{frame}
\begin{frame}{CCSD-LR Dynamic Polarizability} \Large
\begin{normalsize}
1080 b.f. --- 40 hours on 1024 processors
\end{normalsize}
\begin{figure}
\includegraphics[scale=0.18,angle=90]{c60.jpg}
\end{figure}
\begin{center}\begin{tiny}
\href{http://link.aip.org/link/jcpsa6/v129/i22/p226101/s1}{\textit{J. Chem. Phys.} \textbf{129}, 226101 (2008).}
\end{tiny}\end{center}
\end{frame}
\begin{frame}{Large Fifth-rung DFT (B2PLYP)} \Large
\begin{normalsize}
2154 b.f. --- 7 hours on 256 cores
\end{normalsize}
\begin{figure}
\vskip-1ex
\includegraphics[scale=0.18]{stefan1.png}
\end{figure}
\begin{center}\begin{tiny}
\textit{Organometallics} \textbf{29}, 1750-1760 2010.
\end{tiny}\end{center}
\end{frame}
\begin{frame}{Large Hybrid DFT (PBE0)} \Large
\begin{normalsize}
no symmetry, 7560 b.f. --- 6 hours on 1024 cores
\end{normalsize}
\begin{figure}
\includegraphics[scale=0.25]{c540_pbe0_6-31Gs.png}
\end{figure}
\end{frame}
\begin{frame}{}\LARGE
\begin{center}
\textbf{Coupled-cluster theory}
\end{center}
\end{frame}
\begin{frame}{Coupled-cluster theory}
The coupled--cluster (CC) wavefunction ansatz is
\begin{equation}\nonumber
\vert{CC}\rangle={e^T}\vert{HF}\rangle
\end{equation}
where $T=T_1+T_2+\cdots+T_n$. \\
\vskip 1ex
$T$ is an excitation operator which promotes $n$ electrons from occupied orbitals to virtual orbitals in the Hartree-Fock Slater determinant.
\vskip 1ex
Inserting $\vert{CC}\rangle$ into the Sch\"{o}dinger equation:
\vskip-2ex
\begin{columns}[T]
\begin{column}{0.3\linewidth}
\begin{equation}\nonumber
\hat{H}{e^T}\vert{HF}\rangle = E_{CC}{e^T}\vert{HF}\rangle
\end{equation}
\end{column}
\begin{column}{0.3\linewidth}
\begin{equation}\nonumber
\hat{H}\vert{CC}\rangle = E_{CC}\vert{CC}\rangle
\end{equation}
\end{column}
\end{columns}
\end{frame}
\begin{frame}{Coupled-cluster theory}
\begin{eqnarray}
\vert{CC}\rangle &=& \exp(T)\vert{0}\rangle \nonumber \\
T &=& T_1+T_2+\cdots+T_n~~(n \ll N) \nonumber \\
T_1 &=& \sum_{ia} t_i^a \hat{a}^{\dagger}_a \hat{a}_i \nonumber \\
T_2 &=& \sum_{ijab} t_{ij}^{ab} \hat{a}^{\dagger}_{a} \hat{a}^{\dagger}_{b} \hat{a}_{j} \hat{a}_{i} \nonumber \\
\vert{\Psi_{CCD}}\rangle &=& \exp(T_2)\vert{\Psi_{HF}}\rangle \nonumber \\
&=&(1+T_2+T_2^2)\vert{\Psi_{HF}}\rangle \nonumber \\
\vert{\Psi_{CCSD}}\rangle &=& \exp(T_1+T_2)\vert{\Psi_{HF}}\rangle \nonumber \\
&=&(1+T_1+\cdots+T_1^4+T_2+T_2^2+T_1 T_2+T_1^2 T_2)\vert{\Psi_{HF}}\rangle \nonumber \\
\nonumber
\end{eqnarray}
\end{frame}
\begin{frame}{Coupled-cluster theory}
Projective solution of CC: \vskip-3ex
\begin{eqnarray}
E_{CC} &=& \langle{HF}\vert{e^{-T}}{H}{e^T}\vert{HF}\rangle \nonumber \\
0 &=& \langle{X}\vert{e^{-T}}{H}{e^T}\vert{HF}\rangle~~~(X=S,D,\ldots) \nonumber
\end{eqnarray}
CCD is: \vskip-5ex
\begin{eqnarray}
E_{CC} &=& \langle{HF}\vert{e^{-T_2}}{H}{e^{T_2}}\vert{HF}\rangle \nonumber \\
0 &=& \langle{D}\vert{e^{-T_2}}{H}{e^{T_2}}\vert{HF}\rangle \nonumber
\end{eqnarray}
CCSD is: \vskip-5ex
\begin{eqnarray}
E_{CC} &=& \langle{HF}\vert{e^{-T_1-T_2}}{H}{e^{T_1+T_2}}\vert{HF}\rangle \nonumber \\
0 &=& \langle{S}\vert{e^{-T_1-T_2}}{H}{e^{T_1+T_2}}\vert{HF}\rangle \nonumber \\
0 &=& \langle{D}\vert{e^{-T_1-T_2}}{H}{e^{T_1+T_2}}\vert{HF}\rangle \nonumber
\end{eqnarray}
\end{frame}
\begin{frame}{Notation}
\begin{eqnarray}
H &=& H_1 + H_2 \nonumber \\
&=& F + V \nonumber
\end{eqnarray}
$F$ is the Fock matrix. CC only uses the diagonal in the canonical formulation.
\vskip1ex
$V$ is the fluctuation operator and is composed of two-electron integrals as a 4D array.
\vskip1ex
$V$ has 8-fold permutation symmetry in $V_{pq}^{rs}$ and is divided into six blocks:
$V_{ij}^{kl}$, $V_{ij}^{ka}$, $V_{ia}^{jb}$, $V_{ij}^{ab}$, $V_{ia}^{bc}$, $V_{ab}^{cd}$.
\vskip1ex
Indices $i,j,k,\ldots$ ($a,b,c,\ldots$) run over the occupied (virtual) orbitals.
\end{frame}
\begin{frame}{CCD Equations}
\begin{eqnarray}\nonumber
R_{ij}^{ab} = V_{ij}^{ab} + P(ia,jb) \bigg[ T_{ij}^{ae} I_e^b - T_{im}^{ab} I_j^m + \frac{1}{2} V_{ef}^{ab} T_{ij}^{ef} + \nonumber \\
\frac{1}{2} T_{mn}^{ab} I_{ij}^{mn} - T_{mj}^{ae} I_{ie}^{mb} - I_{ie}^{ma} T_{mj}^{eb} + (2 T_{mi}^{ea} - T_{im}^{ea}) I_{ej}^{mb} \bigg] \nonumber
\end{eqnarray}
\begin{eqnarray}
I_b^a &=& (-2 V_{eb}^{mn} + V_{be}^{mn}) T_{mn}^{ea} \nonumber \\
I_j^i &=& (2 V_{ef}^{mi} - V_{ef}^{im}) T_{mj}^{ef} \nonumber \\
I_{kl}^{ij} &=& V_{kl}^{ij} + V_{ef}^{ij} T_{kl}^{ef} \nonumber \\
I_{jb}^{ia} &=& V_{jb}^{ia} - \frac{1}{2} V_{eb}^{im} T_{jm}^{ea} \nonumber \\
I_{bj}^{ia} &=& V_{bj}^{ia} + V_{be}^{im} (T_{mj}^{ea} - \frac{1}{2} T_{mj}^{ae}) - \frac{1}{2} V_{be}^{mi} T_{mj}^{ae} \nonumber
\end{eqnarray}
\end{frame}
\begin{frame}{Turning CC into MMM}
\begin{columns}[T]
\begin{column}{0.45\linewidth}
Some tensor contractions are trivially mapped to GEMM:
\begin{eqnarray}
I_{kl}^{ij} &+=& V_{ef}^{ij} T_{kl}^{ef} \nonumber \\
I_{(kl)}^{(ij)} &+=& V_{(ef)}^{(ij)} T_{(kl)}^{(ef)} \nonumber \\
I_{a}^{b} &+=& V_{c}^{b} T_{a}^{c} \nonumber
\end{eqnarray}
\end{column}
\begin{column}{0.45\linewidth}
Other contractions require reordering to use BLAS:
\begin{eqnarray}
I_{bj}^{ia} &+=& V_{be}^{im} T_{mj}^{ea} \nonumber \\
I_{bj,ia} &+=& V_{be,im} T_{mj,ea} \nonumber \\
J_{bi,ja} &+=& W_{bi,me} U_{me,ja} \nonumber \\
J_{bi}^{ja} &+=& W_{bi}^{me} U_{me}^{ja} \nonumber \\
J_{(bi)}^{(ja)} &+=& W_{(bi)}^{(me)} U_{(me)}^{(ja)} \nonumber \\
J_{x}^{z} &+=& W_{x}^{y} U_{y}^{z} \nonumber
\end{eqnarray}
\end{column}
\end{columns}
\end{frame}
%
% \begin{frame}{} \LARGE
% \begin{center}
% \textbf{Creating NWChem Input Files}
% \end{center}
% \end{frame}
%
% \begin{frame}{Input File Structure} \large
% \begin{columns}[t]
% \begin{column}{0.50 \linewidth}
% \begin{tt}\\
% echo \\
% \vskip1ex
% start water \\
% \vskip1ex
% geometry \\
% ~~O ~0.00 ~0.00 ~0.12 \\
% ~~H ~0.75 ~0.00 -0.47 \\
% ~~H -0.75 ~0.00 -0.47 \\
% end \\
% \vskip1ex
% basis \\
% ~~* library 6-31G \\
% end \\
% \vskip1ex
% task scf optimize \\
% \end{tt}
% \end{column}
% \begin{column}{0.50 \linewidth}
% \begin{block}{\texttt{echo}}<2->
% \color{dred}{Copies input into output.}
% \end{block}
% \begin{block}{\texttt{start <prefix>}}<3->
% \color{dred}{Names job, creates/overwrites existing files.}
% \end{block}
% \begin{block}{\texttt{geometry} and \texttt{basis}}<4->
% \color{dred}{Basic input blocks.}
% \end{block}
% \begin{block}{\texttt{task <method> <task>}}<5->
% \color{dred}{Initiates a calculation.}
% \end{block}
% \end{column}
% \end{columns}
% \end{frame}
%
% \begin{frame}{} \LARGE
% \begin{center}
% \textbf{Geometry Input}
% \end{center}
% \end{frame}
%
% \begin{frame}{Geometry Input --- Cartesian} \Large
% \begin{tt}
% geometry units angstroms autosym \\
% ~~O ~0.00 ~0.00 ~0.12 \\
% ~~H ~0.75 ~0.00 -0.47 \\
% ~~H -0.75 ~0.00 -0.47 \\
% end \\
% \end{tt}
% \vskip2ex
% \begin{block}{Other keywords of interest}<2->
% \texttt{noautosym}, \texttt{units <bohr, pm, nm, atomic>}
% \end{block}
% \end{frame}
%
% \begin{frame}{Geometry Input --- Simple Z-Matrix} \Large
% \begin{tt}
% geometry units angstrom \\
% ~symmetry c1 \\
% ~zmatrix \\
% ~~O \\
% ~~H1 O 0.9572 \\
% ~~H2 O 0.9572 H1 104.52 \\
% ~end \\
% end \\
% \end{tt}
% \end{frame}
%
% \begin{frame}{Geometry Input --- Detailed Z-Matrix} \Large
% \vskip1ex
% \begin{tt}
% geometry units angstrom autosym \\
% ~zmatrix \\
% ~~O \\
% ~~H1 O r \\
% ~~H2 O r H1 theta \\
% ~~constants \\
% ~~~theta 104.0 \\
% ~~variables \\
% ~~~r 0.95 \\
% ~end \\
% end \\
% \end{tt}
% \end{frame}
%
% \begin{frame}{Geometry Input --- Constrained Internal Coordinates} \Large
% \begin{tt}
% geometry units angstroms autosym \\
% ~~O ~0.00 ~0.00 ~0.12 \\
% ~~H ~0.75 ~0.00 -0.47 \\
% ~~H -0.75 ~0.00 -0.47 \\
% ~~zcoord \\
% ~~~~angle 2 1 3 90.0 theta constant \\
% ~~end \\
% end \\
% \end{tt}
% \end{frame}
%
% \begin{frame}{Geometry Input --- Forcing Symmetry} \Large
% TCE only handles subgroups of $D_{2h}$, hence you need to forcibly reduce symmetry:
% \vskip1ex
% \begin{tt}
% geometry units angstroms autosym \\
% ~~symmetry d2h \\
% ~~Ne 0.0 0.0 0.0 \\
% end \\
% \end{tt}
% \vskip2ex
% On the other hand, using symmetry ``fill in'' helps to construct e.g. $C_{60}$.
% \end{frame}
%
% \begin{frame}{Geometry Input --- Other Considerations} \Large
% Consult the documentation regarding:
% \begin{itemize}
% \item symmetry group keywords
% \item adding point charges
% \item periodic geometries
% \item changing mass, charge and extent of nuclei
% \item naming geometries (useful for e.g. BSSE)
% \item other obscure options
% \end{itemize}
% \end{frame}
%
% \begin{frame}{} \LARGE
% \begin{center}
% \textbf{Basis Set Input}
% \end{center}
% \end{frame}
%
% \begin{frame}{Basis Set Input --- Using the Library} \Large
% \begin{columns}[t]
% \begin{column}{0.45 \linewidth}
% \begin{tt}\\
% basis cartesian\\
% ~* library 6-31G \\
% end \\
% \end{tt}
% \vskip1ex
% \begin{tt}
% basis spherical \\
% ~C library cc-pVQZ \\
% ~H library cc-pVTZ \\
% end \\
% \end{tt}
% \end{column}
% \begin{column}{0.55 \linewidth}
% \begin{block}{\texttt{spherical} or \texttt{cartesian}}<2->
% \color{dred}{Pople $\rightarrow$ \texttt{cartesian}. \\ Dunning $\rightarrow$ \texttt{spherical}.}
% \end{block}
% \begin{block}{\texttt{library}}<3->
% \color{dred}{Specify all or by element.}
% \end{block}
% \end{column}
% \end{columns}
% \vskip3ex
% NWChem library is extensive but missing some basis sets present in Gaussian.
% \end{frame}
%
% \begin{frame}{Basis Set Input --- Explicit Definition} \Large
% \begin{tt}
% basis \\
% ~~H S \\
% ~~~33.8650140 0.0060680 \\
% ~~~~5.0947880 0.0453160 \\
% ~~H S \\
% ~~~~0.1027410 1.0000000 \\
% ~~H P \\
% ~~~~1.1588000 0.1884400 \\
% ~~~~0.3258000 0.8824200 \\
% end \\
% \end{tt}
% \vskip1ex
% Cut-and-paste from \href{https://bse.pnl.gov/bse/portal}{bse.pnl.gov/bse/portal}!
% \end{frame}
%
% \begin{frame}{Basis Set Input --- RI-MP2 Fitting Basis Sets} \Large
% \begin{tt}
% basis "ao basis" spherical \\
% ~* library aug-cc-pVTZ \\
% end \\
% \vskip1ex
% basis "ri-mp2 basis" spherical \\
% ~* library cc-pVTZ-RI \\
% ~* library aug-cc-pVTZ-RI\_diffuse \\
% end \\
% \end{tt}
% \vskip2ex
% This is how you activate RI-MP2 in NWChem.
% \end{frame}
%
% \begin{frame}{Basis Set Input --- DFT Fitting Basis Sets} \Large
% \begin{tt}
% basis "ao basis" cartesian \\
% ~* library 6-31+G* \\
% end \\
% \vskip1ex
% basis "cd basis" spherical \\
% ~* library "Ahlrichs Coulomb Fitting" \\
% end \\
% \end{tt}
% \vskip2ex
% \begin{block}{When to Use Density-Fitting}<2->
% Useful for GGA functionals (e.g. PBE). \\
% Less useful for hybrid DFT (e.g. B3LYP).
% \end{block}
% \end{frame}
%
% \begin{frame}{Basis Set Input --- Using ECPs} \Large
% \begin{tt}
% basis \\
% ~Ca library "lanl2dz ecp" \\
% ~F library "6-31g" \\
% ~H library "sto-3g" \\
% end \\
% \vskip1ex
% ecp \\
% ~Ca library "lanl2dz ecp" \\
% end \\
% \end{tt}
% \end{frame}
%
% \begin{frame}{} \LARGE
% \begin{center}
% \textbf{Task Input}
% \end{center}
% \end{frame}
%
% \begin{frame}{Task Input --- What is Available?} \Large
% \begin{itemize}
% \item energy
% \item gradient/optimize/saddle/dynamics
% \item hessian/frequencies
% \item property
% \item dplot
% \item \textit{python}
% \item \textit{shell}
% \end{itemize}
% \end{frame}
%
% \begin{frame}{} \LARGE
% \begin{center}
% \textbf{Method Input}
% \end{center}
% \end{frame}
%
% \begin{frame}{Method Input --- What is Available?} \Large
% \begin{itemize}
% \item SCF/DFT energy, gradient, hessian, property
% \item TDDFT excited-state energy
% \item MP2 energy and gradient (semidirect algorithm)
% \item DHDF and RI-MP2 energy
% \item CCSD/CCSD(T) energy (direct algorithm)
% \item TCE energy (+properties), gradient (sort-of)
% \item MCSCF energy, gradient and property
% \end{itemize}
% \end{frame}
%
% \begin{frame}{} \LARGE
% \begin{center}
% \textbf{SCF Input}
% \end{center}
% \end{frame}
%
% \begin{frame}{SCF Input --- Disk Usage} \Large
% \begin{tt}
% scf \\
% ~~semidirect memsize <words> filesize 0\\
% end \\
% \end{tt}
% \begin{columns}[t]
% \begin{column}{0.3 \linewidth}
% \vskip0ex
% \begin{tt}
% scf \\
% ~~direct \\
% end \\
% \end{tt}
% \end{column}
% \begin{column}{0.6 \linewidth}
% \begin{block}{\texttt{semidirect}}<2->
% \color{black}{Use memory but not disk.}
% \end{block}
% \begin{block}{\texttt{direct}}<3->
% \color{black}{Compute integrals on-the-fly.}
% \end{block}
% \end{column}
% \end{columns}
% \vskip3ex
% \vskip1ex
% A word is 8 bytes. Divide stack (in bytes) by 10.
% \end{frame}
%
% \begin{frame}{SCF Input --- Basic MOVEC I/O} \large
% This is the default behavior: \\
% \begin{tt}
% scf \\
% ~~vectors input atomic output <prefix>.movecs \\
% end \\
% \end{tt}
% \vskip2ex
% Read input guess: \\
% \begin{tt}
% scf \\
% ~~vectors input <file> \\
% end \\
% \end{tt}
% \vskip2ex
% For geometry optimizations and restart, the second option is automatic.
% \vskip1ex
% You can use SCF, DFT and MCSCF movecs interchangeably.
% \end{frame}
%
% \begin{frame}{SCF Input --- Advanced MOVEC I/O} \large
% \begin{tt}
% basis "small" ; * library 3-21G ; end \\
% basis "large" ; * library cc-pVTZ ; end \\
% \vskip1ex
% set "ao basis" "small" \\
% scf \\
% ~~vectors output <file> \\
% end \\
% task scf \\
% \vskip1ex
% set "ao basis" "large" \\
% scf \\
% ~~vectors input project "small" <file> \\
% end \\
% task scf \\
% \end{tt}
% \end{frame}
%
% \begin{frame}{} \LARGE
% \begin{center}
% \textbf{DFT Input}
% \end{center}
% \end{frame}
%
% \begin{frame}{DFT Input --- Predefined Functionals} \Large
% NWChem defines dozens of functionals. \\
% See documentation for a complete list.
% \vskip2ex
% \begin{tt}
% dft \\
% ~~xc <functional> \\
% end \\\
% \end{tt}
% \vskip1ex
% Popular choices: \texttt{b3lyp}, \texttt{pbe0}, \texttt{m06}.
% \end{frame}
%
% \begin{frame}{DFT Input --- Custom Functionals} \Large
% NWChem permits any linear combination of exchange-correlation functionals:
% \vskip1ex
% This is PBE:
% \vskip1ex
% \begin{tt}
% dft \\
% ~~xc xpbe96 1.0 \textbackslash{} \\
% ~~~~~pw91lda local 1.0 \textbackslash{} \\
% ~~~~~cpbe96 nonlocal 1.0 \\
% end \\\
% \end{tt}
% \end{frame}
%
% \begin{frame}{DFT Input --- Double-Hybrid Functionals} \Large
% Adding \texttt{mp2} as a correlation functional leads to double-hybrid functionals.
% \vskip1ex
% This is B2PLYP:
% \vskip1ex
% \begin{tt}
% dft \\
% ~~xc HFexch 0.53 \textbackslash{} \\
% ~~~~~becke88 0.47 \textbackslash{} \\
% ~~~~~lyp 0.73 \textbackslash{} \\
% ~~~~~mp2 0.27 \\
% ~~dftmp2 <semidirect, direct, ri> \\
% end \\
% \end{tt}
% \vskip1ex
% Define RI basis if \texttt{dftmp2 ri} used.
% \end{frame}
%
% \begin{frame}{DFT Input --- Disk Usage} \Large
% \begin{columns}[t]
% \begin{column}{0.3 \linewidth}
% \vskip0ex
% \begin{tt}
% dft \\
% ~~direct \\
% ~~noio \\
% end \\
% \end{tt}
% \end{column}
% \begin{column}{0.5 \linewidth}
% \begin{block}{\texttt{direct}}<2->
% \color{dred}{USE THIS OPTION!!!}
% \end{block}
% \vskip3ex
% \begin{block}{\texttt{noio}}<3->
% \color{black}{This option is pointless.}
% \end{block}
% \end{column}
% \end{columns}
% \end{frame}
%
% \begin{frame}{DFT Input --- Convergence} \Large
% \begin{enumerate}
% \item default (atomic density guess)
% \item if hybrid, project from HF vectors
% \item run with tiny basis and project
% \item use \texttt{smear} if metallic
% \item email \href{mailto:[email protected]}{[email protected]}
% \end{enumerate}
% \vskip2ex
% \color{dred}{Do not waste your time with convergence voodoo!}
% \vskip2ex
% \color{black}{SCF solver is often better than the DFT solver.}
% \end{frame}
%
% \begin{frame}{} \LARGE
% \begin{center}
% \textbf{MP2 Input}
% \end{center}
% \end{frame}
%
% \begin{frame}{MP2 Input --- Important Options} \Large
% \begin{columns}[t]
% \begin{column}{0.55 \linewidth}\\
% \begin{tt}
% mp2 \\
% ~~freeze atomic \\
% ~~tight \\
% ~~scratchdisk <limit> \\
% end \\\
% \end{tt}
% \end{column}
% \begin{column}{0.45 \linewidth}
% \begin{block}{\texttt{freeze atomic}}<2->
% Freeze core.
% \end{block}
% \begin{block}{\texttt{tight}}<3->
% Use with gradients.
% \end{block}
% \end{column}
% \end{columns}
% \begin{block}{\texttt{scratchdisk}}<4->
% The semidirect approach will make multiple passes if disk is limited.
% \end{block}
% \end{frame}
%
% \begin{frame}{} \LARGE
% \begin{center}
% \textbf{CCSD(T) Input}
% \end{center}
% \end{frame}
%
% \begin{frame}{CCSD(T) Input --- Important Options} \Large
% \begin{columns}[t]
% \begin{column}{0.45 \linewidth}\\
% \begin{tt}
% ccsd \\
% ~~freeze atomic \\
% ~~maxiter 20 \\
% ~~thresh 1e-6 \\
% ~~nodisk \\
% end \\\
% \end{tt}
% \begin{block}{Method Input}<4->
% \texttt{task ccsd} \\ \texttt{task ccsd(t)}
% \end{block}
% \end{column}
% \begin{column}{0.55 \linewidth}
% \begin{block}{\texttt{freeze atomic}}<2->
% Freeze core.
% \end{block}
% \begin{block}{\texttt{nodisk}}<3->
% Recompute integrals each iteration.
% \end{block}
% \begin{block}{Symmetry}<5->
% Most of this code does not use symmetry.
% \end{block}
% \end{column}
% \end{columns}
% \end{frame}
%
% \begin{frame}{} \LARGE
% \begin{center}
% \textbf{TCE Input}
% \end{center}
% \end{frame}
%
% \begin{frame}{Disclaimer} \huge
% \begin{center}
% \color{dred}{TCE input is cryptic. Do not attempt to build input files from scratch using the documentation. Start from the examples in the QA directory or search the user list archives, especially as it pertains to maximizing performance.}
% \end{center}
% \end{frame}
%
% \begin{frame}{TCE Input --- Method Input} \Large
% \begin{tt}
% tce; <method>; end \\
% \end{tt}
% \begin{block}{\texttt{method}}<2->
% \texttt{CC2}, \texttt{QCISD}, \texttt{LCCSD},
% \texttt{CCSD}, \texttt{CCSDT}, \texttt{CCSDTQ},
% \texttt{CISD}, \texttt{CISDT}, \texttt{CISDTQ},
% \texttt{CCSD(T)}, \texttt{CCSD(2)\_T}, \texttt{CCSD(2)},
% \texttt{CR-CCSD(T)}, \texttt{CREOMSD(T)}, \texttt{CCSDT(2)\_Q},
% \texttt{MP2}, \texttt{MP3}, \texttt{MP4}, \texttt{MP4SDQ(T)}, \ldots
% \end{block}
% \begin{block}{Useful methods}<3->
% \texttt{CR-CCSD(T)} breaks bonds, \texttt{CCSD} and \texttt{CREOMSD(T)} for excited-states, \texttt{MP4SDQ(T)} for G4 and \texttt{CCSD(T)} otherwise.
% \end{block}
% \end{frame}
%
% \begin{frame}{TCE Input --- Algorithm Options} \Large
% \begin{columns}[t]
% \begin{column}{0.45 \linewidth}\\
% \begin{tt}
% tce \\
% ~~io ga \\
% ~~2eorb \\
% ~~2emet 13 \\
% ~~tilesize <n> \\
% end \\\
% \end{tt}
% \end{column}
% \begin{column}{0.55 \linewidth}
% \begin{block}{\texttt{io ga}}<2->
% \color{dred}{ALWAYS USE THIS!}
% \end{block}
% \begin{block}{\texttt{2eorb}/\texttt{2emet}}<3->
% \color{dred}{Use if RHF/ROHF.}
% \end{block}
% \end{column}
% \end{columns}
% \begin{block}{\texttt{tilesize}}<4->
% \texttt{n=32} for methods ending in SD. \\ \texttt{n=20} for methods ending in (T).
% \end{block}
% \end{frame}
%
% \begin{frame}{} \LARGE
% \begin{center}
% \textbf{TCE Input}
% \end{center}
% \end{frame}
%
% \begin{frame}{Warning} \Huge
% \begin{center}
% \color{dred}{If you do not heed the advice to follow, you shall be doomed to endless misery. Your jobs will fail frequently and sysadmins everywhere will curse your existence.}
% \end{center}
% \end{frame}
%
% \begin{frame}{Memory Input} \Large
% \begin{tt}
% memory stack <S> heap <H> global <G>
% \end{tt}
% \vskip2ex
% Each of these allocations is \textbf{PER PROCESS}!
% \vskip2ex
% \texttt{global} is for GA, \texttt{stack} is local.
% \vskip2ex
% \texttt{heap} usage appears to be system-size invariant.
% \vskip2ex
% \texttt{stack+heap} is statically allocated at boot.
% \vskip2ex
% \texttt{global} is allocated on-demand.
% \end{frame}
%
% \begin{frame}{Memory Input} \large
% 1. Divide memory per node by process per node. \\
% 2. OS and MPI/ARMCI use 100-200 MB. \\
% 3. Set \texttt{heap} to 100 MB. \\
% 4a. If SCF/DFT/MP2/*(T), set \texttt{stack} to 50\% of total. \\
% 4b. If *SD, set \texttt{stack} = \texttt{global}. \\
% \vskip2ex
% \begin{block}{Example --- DFT on Fusion}<2->
% \texttt{memory stack 2000 mb heap 100 mb global 1000 mb}
% \end{block}
% \begin{block}{Example --- CCSD on Fusion}<3->
% \texttt{memory stack 1500 mb heap 100 mb global 1500 mb}
% \end{block}
% \end{frame}
%
% \begin{frame}{} \LARGE
% \begin{center}
% \textbf{Running Jobs on Fusion}
% \end{center}
% \end{frame}
%
% \begin{frame}{Memory Input} \Large
% Simple examples from the tutorial: \texttt{/soft/nwchem/tutorial}
% \vskip3ex
% Complete with PBS for each compiler: \texttt{/soft/nwchem/examples}
% \vskip3ex
% I will upload or create examples upon request.
% \end{frame}
\end{document}