forked from Sinaptik-AI/pandas-ai
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathagent.py
56 lines (41 loc) · 1.42 KB
/
agent.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
import os
import pandas as pd
from pandasai import Agent
employees_data = {
"EmployeeID": [1, 2, 3, 4, 5],
"Name": ["John", "Emma", "Liam", "Olivia", "William"],
"Department": ["HR", "Sales", "IT", "Marketing", "Finance"],
}
salaries_data = {
"EmployeeID": [1, 2, 3, 4, 5],
"Salary": [5000, 6000, 4500, 7000, 5500],
}
employees_df = pd.DataFrame(employees_data)
salaries_df = pd.DataFrame(salaries_data)
# By default, unless you choose a different LLM, it will use BambooLLM.
# You can get your free API key signing up at https://pandabi.ai (you can also configure it in your .env file)
os.environ["PANDASAI_API_KEY"] = "your-api-key"
agent = Agent([employees_df, salaries_df], memory_size=10)
# Chat with the agent
response = agent.chat("Who gets paid the most?")
print(response)
# Get Clarification Questions
questions = agent.clarification_questions("Who gets paid the most?")
for question in questions:
print(question)
# Explain how the chat response is generated
response = agent.explain()
print(response)
# Train with data
queries = [
"Display the distribution of ages in the population.",
"Visualize the distribution of product ratings.",
"Show the distribution of household incomes in a region.",
]
codes = [
"display_age_distribution()",
"visualize_product_ratings_distribution()",
"show_household_incomes_distribution_in_region()",
]
agent.train(queries, codes)
print("Done")