-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patharchiveenv.py
292 lines (272 loc) · 11.4 KB
/
archiveenv.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
from __future__ import print_function
import os
import threading
import numpy as np
import gym
from gym import spaces
from strictfire import StrictFire
from navrep.tools.envplayer import EnvPlayer
from navrep.tools.wdataset import WorldModelDataset
MAX_LIDAR_DIST = 25. # used here for rendering purposes only
class ArchiveEnv(gym.Env):
""" This class allows creating a non-responsive environment from a rosbag
"""
metadata = {'render.modes': ['human']}
def __init__(self, directory,
file_limit=None, silent=False, max_episode_length=1000, shuffle_episodes=False):
# gym env definition
super(ArchiveEnv, self).__init__()
self.action_space = spaces.Box(low=-1, high=1, shape=(3,), dtype=np.float32)
self.observation_space = spaces.Tuple((
spaces.Box(low=0, high=255, shape=(64,64,3), dtype=np.uint8),
spaces.Box(low=-np.inf, high=np.inf, shape=(5,), dtype=np.float32),
))
self.data = WorldModelDataset._load_data(None, directory, file_limit=file_limit)
if len(self.data["scans"]) == 0:
raise ValueError
self.current_iteration = None
self.data["dones"][-1] = 1
self.viewer = None
self.shuffle_episodes = shuffle_episodes
def _step(self, action):
""" preserved when inherited classes overrite step() """
scan = self.data["scans"][self.current_iteration].astype(np.float32)
robotstate = self.data["robotstates"][self.current_iteration]
reward = self.data["rewards"][self.current_iteration]
done = self.data["dones"][self.current_iteration]
obs = (scan, robotstate) # latest scan only (buffer, ray, channel)
if not done:
self.current_iteration += 1
return obs, reward, done, {}
def step(self, action):
return self._step(action)
def reset(self):
action = self.data["actions"][self.current_iteration]
if self.shuffle_episodes:
self.current_iteration = np.random.randint(len(self.data["scans"]))
if self.current_iteration is None:
self.current_iteration = 0
obs, _, _, _ = self._step(action)
return obs
# skip to the start of next episode
while True:
obs, _, done, _ = self._step(action)
if done:
self.current_iteration += 1
if self.current_iteration >= len(self.data["scans"]):
self.current_iteration = 0
break
return obs
def close(self):
self.render(close=True)
def _get_viewer(self):
return self.viewer
def _get_dt(self):
return 0.25
def render(self, mode="human", close=False, image_override=None, save_to_file=False,
action_override=None, draw_score=True):
if close:
if self.viewer is not None:
self.viewer.close()
return
# get last obs
goal_pred = self.data["robotstates"][self.current_iteration-1][:2]
action = self.data["actions"][self.current_iteration-1]
image = self.data["scans"][self.current_iteration-1]
if image_override is not None:
image = image_override
if action_override is not None:
action = action_override
if mode == "rgb_array":
raise NotImplementedError
elif mode in ["human", "rings"]:
# Window and viewport size
_256 = 256
WINDOW_W = _256
WINDOW_H = _256
M_PER_PX = 13.6 / WINDOW_H
VP_W = WINDOW_W
VP_H = WINDOW_H
from gym.envs.classic_control import rendering
import pyglet
from pyglet import gl
# image
from pyglet.gl import GLubyte
arrimg = image.astype(np.uint8)
if arrimg is None:
return
width = arrimg.shape[1]
height = arrimg.shape[0]
pixels = arrimg[::-1,:,:].flatten()
rawData = (GLubyte * len(pixels))(*pixels)
imageData = pyglet.image.ImageData(width, height, 'RGB', rawData)
# enable this to render for hg_archivenv visual
if False:
draw_score = False
save_to_file = True
WINDOW_W = 512
WINDOW_H = 512
M_PER_PX = 51.2 / WINDOW_H
# Create viewer
if self.viewer is None:
self.viewer = rendering.Viewer(WINDOW_W, WINDOW_H)
self.score_label = pyglet.text.Label(
"0000",
font_size=12,
x=20,
y=WINDOW_H * 2.5 / 40.00,
anchor_x="left",
anchor_y="center",
color=(255, 255, 255, 255),
)
# self.transform = rendering.Transform()
self.currently_rendering_iteration = 0
self.image_lock = threading.Lock()
# Render in pyglet
def make_circle(c, r, res=10):
thetas = np.linspace(0, 2 * np.pi, res + 1)[:-1]
verts = np.zeros((res, 2))
verts[:, 0] = c[0] + r * np.cos(thetas)
verts[:, 1] = c[1] + r * np.sin(thetas)
return verts
with self.image_lock:
self.currently_rendering_iteration += 1
self.viewer.draw_circle(r=10, color=(0.3, 0.3, 0.3))
win = self.viewer.window
win.switch_to()
win.dispatch_events()
win.clear()
gl.glViewport(0, 0, VP_W, VP_H)
image_in_vp = rendering.Transform()
image_in_vp.set_translation(2, _256 - 2 - width)
image_in_vp.set_scale(1, 1)
# colors
# bgcolor = np.array([0.4, 0.8, 0.4])
bgcolor = np.array([0.7, 0.75, 0.86])
nosecolor = np.array([0.3, 0.3, 0.3])
# Green background
gl.glBegin(gl.GL_QUADS)
gl.glColor4f(bgcolor[0], bgcolor[1], bgcolor[2], 1.0)
gl.glVertex3f(0, VP_H, 0)
gl.glVertex3f(VP_W, VP_H, 0)
gl.glVertex3f(VP_W, 0, 0)
gl.glVertex3f(0, 0, 0)
gl.glEnd()
# Action arrow
i = WINDOW_W / 2.0
j = WINDOW_H / 2.0
r = (0.3 + np.linalg.norm(action[:2])) / M_PER_PX
angle = np.pi / 2.0 + np.arctan2(action[1], action[0])
color = np.array([0.9, 0.3, 0.0])
inose = i + r * np.cos(angle)
jnose = j + r * np.sin(angle)
iright = i + 0.3 * r * -np.sin(angle)
jright = j + 0.3 * r * np.cos(angle)
ileft = i - 0.3 * r * -np.sin(angle)
jleft = j - 0.3 * r * np.cos(angle)
gl.glBegin(gl.GL_TRIANGLES)
gl.glColor4f(color[0], color[1], color[2], 1)
gl.glVertex3f(inose, jnose, 0)
gl.glVertex3f(iright, jright, 0)
gl.glVertex3f(ileft, jleft, 0)
gl.glEnd()
r = (0.3 + abs(action[2])) / M_PER_PX
angle = np.pi / 2.0 + np.arctan2(action[2], 0)
inose = i + r * np.cos(angle)
jnose = j + r * np.sin(angle)
iright = i + 0.3 * r * -np.sin(angle)
jright = j + 0.3 * r * np.cos(angle)
ileft = i - 0.3 * r * -np.sin(angle)
jleft = j - 0.3 * r * np.cos(angle)
gl.glBegin(gl.GL_TRIANGLES)
gl.glColor4f(color[0], color[1], color[2], 1)
gl.glVertex3f(inose, jnose, 0)
gl.glVertex3f(iright, jright, 0)
gl.glVertex3f(ileft, jleft, 0)
gl.glEnd()
# Agent body
i = WINDOW_W / 2.0
j = WINDOW_H / 2.0
r = 0.3 / M_PER_PX
angle = np.pi / 2.0
poly = make_circle((i, j), r)
gl.glBegin(gl.GL_POLYGON)
color = np.array([1.0, 1.0, 1.0])
gl.glColor4f(color[0], color[1], color[2], 1)
for vert in poly:
gl.glVertex3f(vert[0], vert[1], 0)
gl.glEnd()
# Direction triangle
inose = i + r * np.cos(angle)
jnose = j + r * np.sin(angle)
iright = i + 0.3 * r * -np.sin(angle)
jright = j + 0.3 * r * np.cos(angle)
ileft = i - 0.3 * r * -np.sin(angle)
jleft = j - 0.3 * r * np.cos(angle)
gl.glBegin(gl.GL_TRIANGLES)
gl.glColor4f(nosecolor[0], nosecolor[1], nosecolor[2], 1)
gl.glVertex3f(inose, jnose, 0)
gl.glVertex3f(iright, jright, 0)
gl.glVertex3f(ileft, jleft, 0)
gl.glEnd()
# Goal
goalcolor = np.array([1., 1., 0.3])
px_goal = goal_pred / M_PER_PX
igoal = i - px_goal[1] # rotate 90deg to face up
jgoal = j + px_goal[0]
# Goal line
gl.glBegin(gl.GL_LINE_LOOP)
gl.glColor4f(goalcolor[0], goalcolor[1], goalcolor[2], 1)
gl.glVertex3f(i, j, 0)
gl.glVertex3f(igoal, jgoal, 0)
gl.glEnd()
# Goal markers
gl.glBegin(gl.GL_TRIANGLES)
gl.glColor4f(goalcolor[0], goalcolor[1], goalcolor[2], 1)
triangle = make_circle((igoal, jgoal), r, res=3)
for vert in triangle:
gl.glVertex3f(vert[0], vert[1], 0)
gl.glEnd()
# Render image
image_in_vp.enable()
# black background
gl.glBegin(gl.GL_QUADS)
gl.glColor4f(1, 1, 1, 1.0)
gl.glVertex3f(0, height, 0)
gl.glVertex3f(width, height, 0)
gl.glVertex3f(width, 0, 0)
gl.glVertex3f(0, 0, 0)
gl.glEnd()
# image
imageData.blit(0,0)
image_in_vp.disable()
# Text
self.score_label.text = "File {} It {} a {:.1f} {:.1f} {:.1f}".format(
self.current_iteration // 1000,
self.current_iteration % 1000,
action[0],
action[1],
action[2],
)
if draw_score:
self.score_label.draw()
win.flip()
if save_to_file:
pyglet.image.get_buffer_manager().get_color_buffer().save(
"/tmp/archivenv{:05}.png".format(self.currently_rendering_iteration))
return self.viewer.isopen
# separate main function to define the script-relevant arguments used by StrictFire
def main(
# Env args
shuffle=False,
directory="~/navdreams_data/wm_experiments/datasets/V/rosbag",
# Player args
render_mode='human', step_by_step=False,
):
np.set_printoptions(precision=2, suppress=True)
directories = [os.path.expanduser(directory)]
env = ArchiveEnv(directories, shuffle_episodes=shuffle)
player = EnvPlayer(env, render_mode, step_by_step)
player.run()
if __name__ == "__main__":
StrictFire(main)