-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinference_utilities.py
443 lines (333 loc) · 15.6 KB
/
inference_utilities.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
import time
from mpi4py import MPI
from mpi4py.util import pkl5
import numpy as np
import loading_utilities as lu
import lgssm_utilities as ssmu
def block(block_list, dims=(2, 1)):
layer = []
for i in block_list:
layer.append(np.concatenate(i, axis=dims[0]))
return np.concatenate(layer, axis=dims[1])
def individual_scatter(data, root=0):
comm = pkl5.Intracomm(MPI.COMM_WORLD)
cpu_id = comm.Get_rank()
size = comm.Get_size()
if cpu_id == root:
item = None
for i, attr in enumerate(data):
if i == 0:
item = attr
else:
comm.send(attr, dest=i)
for i in range(len(data), size):
comm.send(None, dest=i)
else:
item = comm.recv(source=root)
return item
def individual_gather(data, root=0):
comm = pkl5.Intracomm(MPI.COMM_WORLD)
cpu_id = comm.Get_rank()
size = comm.Get_size()
item = []
if cpu_id == root:
for i in range(size):
if i == root:
item.append(data)
else:
item.append(comm.recv(source=i))
else:
comm.send(data, dest=root)
return item
def individual_gather_sum(data, root=0):
# as you gather inputs, rather than storing them sum them together
comm = pkl5.Intracomm(MPI.COMM_WORLD)
cpu_id = comm.Get_rank()
size = comm.Get_size()
def combine_packet(packet):
combined_packet = list(packet[0])
combined_packet[2] = [combined_packet[2]]
combined_packet[3] = [combined_packet[3]]
for ii, i in enumerate(packet[1:]):
combined_packet[0] += i[0]
for k in i[1].keys():
combined_packet[1][k] += i[1][k]
combined_packet[2].append(i[2])
combined_packet[3].append(i[3])
return combined_packet
if cpu_id == root:
cpu_list = [i for i in range(size) if i != root]
data_gathered = combine_packet(data)
for cl in cpu_list:
data_received = comm.recv(source=cl)
data_received = combine_packet(data_received)
data_gathered[0] += data_received[0]
for k in data_received[1].keys():
data_gathered[1][k] += data_received[1][k]
for i in data_received[2]:
data_gathered[2].append(i)
for i in data_received[3]:
data_gathered[3].append(i)
else:
comm.send(data, dest=root)
data_gathered = None
return data_gathered
def solve_masked(A, b, mask=None, ridge_penalty=None):
# solves the linear equation b=Ax where x has 0's where mask == 0
x_hat = np.zeros((A.shape[1], b.shape[1]))
if mask is None:
mask = np.ones_like(x_hat)
for i in range(b.shape[1]):
non_zero_loc = mask[:, i] != 0
if ridge_penalty is not None:
r_size = ridge_penalty.shape[0]
penalty = ridge_penalty[i] * np.eye(r_size)
A[:r_size, :r_size] = A[:r_size, :r_size] + penalty
b_i = b[non_zero_loc, i]
A_nonzero = A[np.ix_(non_zero_loc, non_zero_loc)]
# try:
# x_hat[non_zero_loc, i] = np.linalg.solve(A_nonzero, b_i)
# except np.linalg.LinAlgError:
# print('matrix is singular, using lstsq')
x_hat[non_zero_loc, i] = np.linalg.lstsq(A_nonzero, b_i, rcond=None)[0]
return x_hat
def fit_em(model, data, emissions_offset=None, init_mean=None, init_cov=None, num_steps=10,
save_folder='em_test', save_every=10, memmap_cpu_id=None, starting_step=0):
comm = pkl5.Intracomm(MPI.COMM_WORLD)
cpu_id = comm.Get_rank()
size = comm.Get_size()
if cpu_id == 0:
print('Fitting with EM')
emissions = data['emissions']
inputs = data['inputs']
if len(emissions) < size:
raise Exception('Number of cpus must be <= number of data sets')
if emissions_offset is None:
emissions_offset = model.estimate_emissions_offset(emissions)
if init_mean is None:
init_mean = model.estimate_init_mean(emissions)
if init_cov is None:
init_cov = model.estimate_init_cov(emissions)
starting_log_likelihood = model.log_likelihood
starting_time = model.train_time
else:
emissions = None
inputs = None
emissions_offset = None
init_mean = None
init_cov = None
log_likelihood_out = []
time_out = []
start = time.time()
for ep in range(starting_step, starting_step + num_steps):
model = comm.bcast(model, root=0)
ll, smoothed_means, emissions_offset, new_init_covs = \
model.em_step(emissions, inputs, emissions_offset, init_mean, init_cov,
cpu_id=cpu_id, num_cpus=size, memmap_cpu_id=memmap_cpu_id)
if cpu_id == 0:
# set the initial mean and cov to the first smoothed mean / cov
for i in range(len(smoothed_means)):
init_mean[i] = smoothed_means[i][0, :]
init_cov[i] = new_init_covs[i] / 2 + new_init_covs[i].T / 2
log_likelihood_out.append(ll)
time_out.append(time.time() - start)
if starting_step > 0:
model.log_likelihood = np.concatenate((starting_log_likelihood, log_likelihood_out))
model.train_time = np.concatenate((starting_time, time_out))
else:
model.log_likelihood = log_likelihood_out
model.train_time = time_out
if np.mod(ep + 1, save_every) == 0:
smoothed_means = [i[:, :model.dynamics_dim] for i in smoothed_means]
posterior_train = {'ll': ll,
'posterior': smoothed_means,
'emissions_offset': emissions_offset,
'init_mean': init_mean,
'init_cov': init_cov,
}
lu.save_run(save_folder, model_trained=model, ep=ep+1, posterior_train=posterior_train)
if model.verbose:
print('Finished step', ep + 1, '/', starting_step + num_steps)
print('log likelihood =', log_likelihood_out[-1])
print('Time elapsed =', time_out[-1], 's')
time_remaining = time_out[-1] / (ep - starting_step + 1) * (num_steps - (ep - starting_step) - 1)
print('Estimated remaining =', time_remaining, 's')
if cpu_id == 0:
return ll, model, emissions_offset, init_mean, init_cov
else:
return None, None, None, None, None
def parallel_get_post(model, data, emissions_offset=None, init_mean=None, init_cov=None, max_iter=1, converge_res=1e-2, time_lim=300,
memmap_cpu_id=None, infer_missing=False):
comm = pkl5.Intracomm(MPI.COMM_WORLD)
cpu_id = comm.Get_rank()
size = comm.Get_size()
if cpu_id == 0:
emissions = data['emissions']
inputs = data['inputs']
if emissions_offset is None:
emissions_offset = model.estimate_emissions_offset(emissions)
if init_mean is None:
init_mean = model.estimate_init_mean(emissions)
if init_cov is None:
init_cov = model.estimate_init_cov(emissions)
test_data_packaged = model.package_data_mpi(emissions, inputs, emissions_offset, init_mean, init_cov, size)
print('calculating IRFs')
window = (15, 30)
irfs = ssmu.calculate_irfs(model, window=window)
dirfs = ssmu.calculate_dirfs(model, window=window)
eirfs = ssmu.calculate_eirfs(model, window=window)
else:
test_data_packaged = None
# get posterior on test data
model = comm.bcast(model)
data_out = individual_scatter(test_data_packaged)
if data_out is not None:
ll_smeans = []
for ii, i in enumerate(data_out):
emissions = i[0][:time_lim, :].copy()
inputs = i[1][:time_lim, :].copy()
emissions_offset = i[2].copy()
init_mean = i[3].copy()
init_cov = i[4].copy()
converged = False
iter_num = 1
while not converged and iter_num <= max_iter:
ll, smoothed_means, suff_stats = model.lgssm_smoother(emissions, inputs, emissions_offset,
init_mean, init_cov,
memmap_cpu_id=memmap_cpu_id)[:3]
y = np.where(np.isnan(emissions), (model.emissions_weights @ smoothed_means.T).T + emissions_offset, emissions)
emissions_offset_new = (y.sum(0) - model.emissions_weights @ smoothed_means.sum(0)
- model.emissions_input_weights @ inputs.sum(0)) / emissions.shape[0]
init_mean_new = smoothed_means[0, :].copy()
init_cov_new = suff_stats['first_cov'].copy()
init_cov_new = init_cov_new / 2 + init_cov_new.T / 2
emissions_offset_same = np.max(np.abs(emissions_offset - emissions_offset_new)) < converge_res
init_mean_same = np.max(np.abs(init_mean - init_mean_new)) < converge_res
init_cov_same = np.max(np.abs(init_cov - init_cov_new)) < converge_res
if emissions_offset_same and init_mean_same and init_cov_same:
converged = True
else:
emissions_offset = emissions_offset_new.copy()
init_mean = init_mean_new.copy()
init_cov = init_cov_new.copy()
print('cpu_id', cpu_id + 1, '/', size, 'data #', ii + 1, '/', len(data_out),
'posterior iteration:', iter_num, ', converged:', converged)
iter_num += 1
emissions = i[0].copy()
inputs = i[1].copy()
ll, posterior = model.lgssm_smoother(emissions, inputs, emissions_offset, init_mean, init_cov, memmap_cpu_id)[:2]
model_sampled = model.sample(num_time=emissions.shape[0], inputs=inputs,
emissions_offset=emissions_offset, init_mean=init_mean, init_cov=init_cov,
add_noise=False)['emissions']
model_sampled_noise = model.sample(num_time=emissions.shape[0], inputs=inputs,
emissions_offset=emissions_offset, init_mean=init_mean, init_cov=init_cov,
add_noise=True)['emissions']
posterior = posterior @ model.emissions_weights.T + emissions_offset[None, :]
posterior_missing = None
ll_missing = []
if infer_missing:
print('inferring missing neurons')
posterior_missing = np.zeros_like(emissions)
for n in range(emissions.shape[1]):
print('inferring neuron ' + str(n + 1) + '/' + str(emissions.shape[1]))
if np.any(~np.isnan(emissions[:, n])):
emissions_missing = emissions.copy()
emissions_missing[:, n] = np.nan
# check if this neuron has a sister pair. If it does, silence it too
neuron_name = model.cell_ids[n]
if neuron_name[-1] == 'L':
sister_pair = neuron_name[:-1] + 'R'
if sister_pair in model.cell_ids:
emissions_missing[:, model.cell_ids.index(sister_pair)] = np.nan
elif neuron_name[-1] == 'R':
sister_pair = neuron_name[:-1] + 'L'
if sister_pair in model.cell_ids:
emissions_missing[:, model.cell_ids.index(sister_pair)] = np.nan
ll_missing_this, posterior_recon = \
model.lgssm_smoother(emissions_missing, inputs,
emissions_offset, init_mean, init_cov,
memmap_cpu_id)[:2]
ll_missing.append(ll_missing_this)
posterior_missing[:, n] = posterior_recon[:, n]
else:
ll_missing.append(ll.copy())
posterior_missing[:, n] = posterior[:, n]
ll_smeans.append((ll, posterior, model_sampled, model_sampled_noise, emissions_offset, init_mean, init_cov,
posterior_missing, ll_missing))
else:
ll_smeans = None
ll_smeans = individual_gather(ll_smeans)
# this is a hack to force blocking so some processes don't end before others
blocking_scatter = individual_scatter(ll_smeans)
if cpu_id == 0:
print('gathering')
ll_smeans = [i for i in ll_smeans if i is not None]
ll_smeans_out = []
for i in ll_smeans:
for j in i:
ll_smeans_out.append(j)
ll_smeans = ll_smeans_out
ll = [i[0] for i in ll_smeans]
ll = np.sum(ll)
smoothed_means = [i[1] for i in ll_smeans]
model_sampled = [i[2] for i in ll_smeans]
model_sampled_noise = [i[3] for i in ll_smeans]
emissions_offset = [i[4] for i in ll_smeans]
init_mean = [i[5] for i in ll_smeans]
init_cov = [i[6] for i in ll_smeans]
posterior_missing = [i[7] for i in ll_smeans]
ll_missing = [i[8] for i in ll_smeans]
inference_test = {'ll': ll,
'posterior': smoothed_means,
'model_sampled': model_sampled,
'model_sampled_noise': model_sampled_noise,
'emissions_offset': emissions_offset,
'init_mean': init_mean,
'init_cov': init_cov,
'cell_ids': model.cell_ids,
'posterior_missing': posterior_missing,
'll_missing': ll_missing,
'irfs': irfs,
'dirfs': dirfs,
'eirfs': eirfs,
}
print('gathered')
return inference_test
return None
def parallel_get_ll(model, data):
comm = pkl5.Intracomm(MPI.COMM_WORLD)
cpu_id = comm.Get_rank()
size = comm.Get_size()
if cpu_id == 0:
emissions = data['emissions']
inputs = data['inputs']
emissions_offset = data['emissions_offset']
init_mean = data['init_mean']
init_cov = data['init_cov']
test_data_packaged = model.package_data_mpi(emissions, inputs, emissions_offset, init_mean, init_cov, size)
else:
test_data_packaged = None
# get posterior on test data
model = comm.bcast(model)
data_out = individual_scatter(test_data_packaged)
emissions_this = [i[0] for i in data_out]
inputs_this = [i[1] for i in data_out]
emissions_offset = [i[2] for i in data_out]
init_mean_this = [i[3] for i in data_out]
init_cov_this = [i[4] for i in data_out]
ll = model.get_ll(emissions_this, inputs_this, emissions_offset,
init_mean_this, init_cov_this)
ll = individual_gather(ll)
# this is a hack to force blocking so some processes don't end before others
blocking_scatter = individual_scatter(ll)
if cpu_id == 0:
ll = [i for i in ll if i is not None]
return np.sum(ll)
return None
def is_pd(B):
"""Returns true when input is positive-definite, via Cholesky"""
try:
_ = np.linalg.cholesky(B)
return True
except np.linalg.LinAlgError:
return False