-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun_inference.py
570 lines (471 loc) · 26 KB
/
run_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
from ssm_classes import Lgssm
import loading_utilities as lu
import numpy as np
import time
from mpi4py import MPI
from mpi4py.util import pkl5
import inference_utilities as iu
import analysis_methods as am
import os
import pickle
from pathlib import Path
import lgssm_utilities as lgssmu
import copy
import metrics as met
import shutil
def fit_synthetic(param_name, save_folder):
comm = pkl5.Intracomm(MPI.COMM_WORLD)
size = comm.Get_size()
cpu_id = comm.Get_rank()
is_parallel = size > 1
run_params = lu.get_run_params(param_name=param_name)
if cpu_id == 0:
rng = np.random.default_rng(run_params['random_seed'])
# define the model, setting specific parameters
model_true = Lgssm(run_params['dynamics_dim'], run_params['emissions_dim'], run_params['input_dim'],
dynamics_lags=run_params['dynamics_lags'], dynamics_input_lags=run_params['dynamics_input_lags'],
emissions_input_lags=run_params['emissions_input_lags'], param_props=run_params['param_props'])
model_true.randomize_weights(rng=rng)
if model_true.param_props['update']['emissions_weights']:
emission_weights_values = rng.uniform(size=(model_true.emissions_dim, model_true.dynamics_lags))
emission_weights_values = emission_weights_values / np.sum(emission_weights_values, axis=1, keepdims=True)
emissions_weights_list = [np.diag(emission_weights_values[:, i]) for i in range(emission_weights_values.shape[1])]
model_true.emissions_weights_init = np.concatenate(emissions_weights_list, axis=1)
else:
model_true.emissions_weights_init = np.eye(model_true.emissions_dim, model_true.dynamics_dim_full)
model_true.emissions_input_weights_init = np.zeros(model_true.emissions_input_weights_init.shape)
model_true.set_to_init()
start = time.time()
# sample from the randomized model
data_train = \
model_true.sample_multiple(num_time=run_params['num_time'],
num_data_sets=run_params['num_data_sets'],
scattered_nan_freq=run_params['scattered_nan_freq'],
lost_emission_freq=run_params['lost_emission_freq'],
input_time_scale=run_params['input_time_scale'],
rng=rng)
data_test = \
model_true.sample_multiple(num_time=run_params['num_time'],
num_data_sets=run_params['num_data_sets'],
scattered_nan_freq=run_params['scattered_nan_freq'],
lost_emission_freq=run_params['lost_emission_freq'],
input_time_scale=run_params['input_time_scale'],
rng=rng)
print('Time to sample:', time.time() - start, 's')
# make a new model to fit to the random model
model_trained = Lgssm(run_params['dynamics_dim'], run_params['emissions_dim'], run_params['input_dim'],
verbose=run_params['verbose'], param_props=run_params['param_props'],
dynamics_lags=run_params['dynamics_lags'], dynamics_input_lags=run_params['dynamics_input_lags'],
emissions_input_lags=run_params['emissions_input_lags'], ridge_lambda=run_params['ridge_lambda'])
# for any value that we are not fitting, set it to the true value
for k in model_trained.param_props['update'].keys():
if not model_trained.param_props['update'][k]:
init_key = k + '_init'
setattr(model_trained, init_key, getattr(model_true, init_key))
model_trained.set_to_init()
lu.save_run(save_folder, model_true=model_true, model_trained=model_trained, ep=0, data_train=data_train,
data_test=data_test, params=run_params)
else:
model_trained = None
data_train = None
data_test = None
model_true = None
# get the log likelihood of the true data
ll_true_params = iu.parallel_get_ll(model_true, data_train)
if cpu_id == 0:
print('log likelihood of true parameters: ', ll_true_params)
model_true.log_likelihood = [ll_true_params]
lu.save_run(save_folder, model_true=model_true)
run_fitting(run_params, model_trained, data_train, data_test, save_folder, model_true=model_true)
def fit_experimental(param_name, save_folder):
# the goal of this function is to take the pairwise stimulation and response data from
# https://arxiv.org/abs/2208.04790
# this data is a collection of calcium recordings of ~200 neurons over ~5-15 minutes where individual neurons are
# randomly targets and stimulated optogenetically
# We want to fit a linear dynamical system to the data in order to infer the connection weights between neurons
# The model is of the form
# x_t = A @ x_(t-1) + B @ u_t + w_t
# y_t = C @ x_t + D @ u_t + v_t
# The code should work with different parameters, but for my normal use case
# C is the identity
# B is diagonal
# D is the zero matrix
# w_t, v_t are gaussian with 0 mean
# set up the option to parallelize the model fitting over CPUs
comm = pkl5.Intracomm(MPI.COMM_WORLD)
size = comm.Get_size()
cpu_id = comm.Get_rank()
run_params = lu.get_run_params(param_name=param_name)
# cpu_id 0 is the parent node which will send out the data to the children nodes
if cpu_id == 0:
if 'upsample_factor' in run_params:
upsample_factor = run_params['upsample_factor']
else:
upsample_factor = 1
# load in the data for the model and do any preprocessing here
data_train, data_test = \
lu.load_data(run_params['data_path'], num_data_sets=run_params['num_data_sets'],
held_out_data=run_params['held_out_data'],
neuron_freq=run_params['neuron_freq'],
hold_out=run_params['hold_out'],
upsample_factor=upsample_factor)
# initialize the model and set model weights
num_neurons = data_train['emissions'][0].shape[1]
model_trained = Lgssm(num_neurons, num_neurons, num_neurons,
dynamics_lags=run_params['dynamics_lags'],
dynamics_input_lags=run_params['dynamics_input_lags'],
emissions_input_lags=run_params['emissions_input_lags'],
verbose=run_params['verbose'],
param_props=run_params['param_props'],
ridge_lambda=run_params['ridge_lambda'],
cell_ids=data_train['cell_ids'])
# model_trained.emissions_weights = np.eye(model_trained.emissions_dim, model_trained.dynamics_dim_full)
model_trained.emissions_input_weights = np.zeros(model_trained.emissions_input_weights.shape)
# permute the mask for the dynamics weights so that it is a randomized version
if 'permute_mask' in run_params:
if run_params['permute_mask']:
rng = np.random.default_rng(run_params['random_seed'])
old_mask = model_trained.param_props['mask']['dynamics_weights']
new_inds_row = rng.permutation(model_trained.dynamics_dim)
new_inds_col = [i * model_trained.dynamics_dim + new_inds_row for i in range(model_trained.dynamics_lags)]
new_inds_col = np.concatenate(new_inds_col)
new_mask = old_mask[np.ix_(new_inds_row, new_inds_col)]
model_trained.param_props['mask']['dynamics_weights'] = new_mask
# permute the mask for the dynamics weights so that it is a randomized version
if 'randomize_weights' in run_params:
if run_params['randomize_weights']:
if 'myVar' not in locals():
rng = np.random.default_rng(run_params['random_seed'])
model_trained.randomize_weights(rng=rng)
lu.save_run(save_folder, model_trained=model_trained, ep=0, data_train=data_train, data_test=data_test, params=run_params)
else:
# if you are a child node, just set everything to None and only calculate your sufficient statistics
model_trained = None
data_train = None
data_test = None
run_fitting(run_params, model_trained, data_train, data_test, save_folder)
def infer_posterior(param_name, data_folder, infer_missing=False):
# fit a posterior to test data
# set up the option to parallelize the model fitting over CPUs
comm = pkl5.Intracomm(MPI.COMM_WORLD)
cpu_id = comm.Get_rank()
run_params = lu.get_run_params(param_name=param_name)
if run_params['use_memmap']:
memmap_cpu_id = cpu_id
else:
memmap_cpu_id = None
# cpu_id 0 is the parent node which will send out the data to the children nodes
if cpu_id == 0:
data_folder = Path(data_folder)
model_path = data_folder / 'models' / 'model_trained.pkl'
data_train_path = data_folder / 'data_train.pkl'
data_test_path = data_folder / 'data_test.pkl'
# load in the model
model_file = open(model_path, 'rb')
model = pickle.load(model_file)
model_file.close()
# load in the data
data_train_file = open(data_train_path, 'rb')
data_train = pickle.load(data_train_file)
data_train_file.close()
data_test_file = open(data_test_path, 'rb')
data_test = pickle.load(data_test_file)
data_test_file.close()
posterior_train_path = data_folder / 'posterior_train.pkl'
if posterior_train_path.exists():
posterior_train_file = open(posterior_train_path, 'rb')
posterior_train = pickle.load(posterior_train_file)
posterior_train_file.close()
emissions_offset_train = posterior_train['emissions_offset']
init_mean_train = posterior_train['init_mean']
init_cov_train = posterior_train['init_cov']
else:
emissions_offset_train = None
init_mean_train = None
init_cov_train = None
posterior_test_path = data_folder / 'posterior_test.pkl'
if posterior_test_path.exists():
posterior_test_file = open(posterior_test_path, 'rb')
posterior_test = pickle.load(posterior_test_file)
posterior_test_file.close()
emissions_offset_test = posterior_test['emissions_offset']
init_mean_test = posterior_test['init_mean']
init_cov_test = posterior_test['init_cov']
else:
emissions_offset_test = None
init_mean_test = None
init_cov_test = None
else:
model = None
data_train = None
data_test = None
emissions_offset_train = None
init_mean_train = None
init_cov_train = None
emissions_offset_test = None
init_mean_test = None
init_cov_test = None
posterior_train = iu.parallel_get_post(model, data_train, max_iter=100, memmap_cpu_id=memmap_cpu_id, time_lim=300,
emissions_offset=emissions_offset_train, init_mean=init_mean_train,
init_cov=init_cov_train, infer_missing=infer_missing)
posterior_test = iu.parallel_get_post(model, data_test, max_iter=100, memmap_cpu_id=memmap_cpu_id, time_lim=300,
emissions_offset=emissions_offset_test, init_mean=init_mean_test,
init_cov=init_cov_test, infer_missing=infer_missing)
if cpu_id == 0:
lu.save_run(data_folder, posterior_train=posterior_train, posterior_test=posterior_test)
def continue_fit(param_name, save_folder, extra_train_steps):
# set up the option to parallelize the model fitting over CPUs
comm = pkl5.Intracomm(MPI.COMM_WORLD)
size = comm.Get_size()
cpu_id = comm.Get_rank()
run_params = lu.get_run_params(param_name=param_name)
run_params['num_train_steps'] = extra_train_steps
# cpu_id 0 is the parent node which will send out the data to the children nodes
if cpu_id == 0:
save_folder = Path(save_folder)
# load in the data for the model and do any preprocessing here
data_train_path = save_folder / 'data_train.pkl'
data_train_file = open(data_train_path, 'rb')
data_train = pickle.load(data_train_file)
data_train_file.close()
data_test_path = save_folder / 'data_test.pkl'
data_test_file = open(data_test_path, 'rb')
data_test = pickle.load(data_test_file)
data_test_file.close()
posterior_train_path = save_folder / 'posterior_train.pkl'
posterior_train_file = open(posterior_train_path, 'rb')
posterior_train = pickle.load(posterior_train_file)
posterior_train_file.close()
posterior_test_path = save_folder / 'posterior_test.pkl'
if posterior_test_path.exists():
posterior_test_file = open(posterior_test_path, 'rb')
posterior_test = pickle.load(posterior_test_file)
posterior_test_file.close()
emissions_offset_test = posterior_test['emissions_offset']
init_mean_test = posterior_test['init_mean']
init_cov_test = posterior_test['init_cov']
else:
emissions_offset_test = None
init_mean_test = None
init_cov_test = None
model_path = save_folder / 'models' / 'model_trained.pkl'
model_file = open(model_path, 'rb')
model_trained = pickle.load(model_file)
model_file.close()
emissions_offset_train = posterior_train['emissions_offset']
init_mean_train = posterior_train['init_mean']
init_cov_train = posterior_train['init_cov']
starting_step = len(model_trained.log_likelihood)
else:
# if you are a child node, just set everything to None and only calculate your sufficient statistics
model_trained = None
data_train = None
data_test = None
emissions_offset_train = None
init_mean_train = None
init_cov_train = None
emissions_offset_test = None
init_mean_test = None
init_cov_test = None
starting_step = 0
run_fitting(run_params, model_trained, data_train, data_test, save_folder, starting_step=starting_step,
emissions_offset_train=emissions_offset_train, emissions_offset_test=emissions_offset_test,
init_mean_train=init_mean_train, init_mean_test=init_mean_test,
init_cov_train=init_cov_train, init_cov_test=init_cov_test)
def prune_model(param_name, save_folder, extra_train_steps, prune_frac):
# set up the option to parallelize the model fitting over CPUs
comm = pkl5.Intracomm(MPI.COMM_WORLD)
size = comm.Get_size()
cpu_id = comm.Get_rank()
# this code will load in an existing model then prune connections by removing the model weights closest to 0
error_frac = np.inf
pruning_method = ['exponential', 'linear']
pruning_method = pruning_method[1]
min_score_frac = 0.9
window = (15, 30) # window around which to calculate the eIRFs and IRFs
run_params = lu.get_run_params(param_name=param_name)
run_params['num_train_steps'] = extra_train_steps
# cpu_id 0 is the parent node which will send out the data to the children nodes
if cpu_id == 0:
save_folder = Path(save_folder)
# load in the data for the model and do any preprocessing here
data_train_path = save_folder / 'data_train.pkl'
data_train_file = open(data_train_path, 'rb')
data_train = pickle.load(data_train_file)
data_train_file.close()
data_test_path = save_folder / 'data_test.pkl'
data_test_file = open(data_test_path, 'rb')
data_test = pickle.load(data_test_file)
data_test_file.close()
data_irfs = lgssmu.get_impulse_response_functions(
data_test['emissions'], data_test['inputs'], sample_rate=data_test['sample_rate'],
window=window, sub_pre_stim=True)[0]
data_irms = np.sum(data_irfs[window[0]:, :, :], axis=0)
data_irms[np.eye(data_irms.shape[0], dtype=bool)] = np.nan
posterior_train_path = save_folder / 'posterior_train.pkl'
posterior_train_file = open(posterior_train_path, 'rb')
posterior_train = pickle.load(posterior_train_file)
posterior_train_file.close()
posterior_test_path = save_folder / 'posterior_test.pkl'
if posterior_test_path.exists():
posterior_test_file = open(posterior_test_path, 'rb')
posterior_test = pickle.load(posterior_test_file)
posterior_test_file.close()
emissions_offset_test = posterior_test['emissions_offset']
init_mean_test = posterior_test['init_mean']
init_cov_test = posterior_test['init_cov']
else:
emissions_offset_test = None
init_mean_test = None
init_cov_test = None
model_path = save_folder / 'models' / 'model_trained.pkl'
model_file = open(model_path, 'rb')
model_base = pickle.load(model_file)
model_file.close()
emissions_offset_train = posterior_train['emissions_offset']
init_mean_train = posterior_train['init_mean']
init_cov_train = posterior_train['init_cov']
model_irms_base = lgssmu.calculate_stams(model_base, window=window)
model_base_score = met.nan_corr(data_irms, model_irms_base)[0]
prune_folder_str = 'pruning_es' + f'{int(extra_train_steps):03d}' + '_pf' + f'{int(prune_frac * 100):03d}'
if (save_folder / prune_folder_str).exists():
shutil.rmtree(save_folder / prune_folder_str)
os.mkdir(save_folder / prune_folder_str)
dynamics_dim = model_base.dynamics_dim
dynamics_lags = model_base.dynamics_lags
model_dict = {'model': copy.deepcopy(model_base),
'init_mean_train': init_mean_train.copy(),
'init_mean_test': init_mean_test.copy(),
'init_cov_train': init_cov_train.copy(),
'init_cov_test': init_cov_test.copy(),
'emissions_offset_train': emissions_offset_train.copy(),
'emissions_offset_test': emissions_offset_test.copy(),
}
else:
# if you are a child node, just set everything to None and only calculate your sufficient statistics
data_train = None
data_test = None
model_dict = {'model': None,
'init_mean_train': None,
'init_mean_test': None,
'init_cov_train': None,
'init_cov_test': None,
'emissions_offset_train': None,
'emissions_offset_test': None,
}
num_iter = 0
while (error_frac > min_score_frac):
if cpu_id == 0:
# prune the smallest weights
current_mask = model_dict['model'].param_props['mask']['dynamics_weights'][:, :dynamics_dim]
model_weights = lgssmu.calculate_eirms(model_dict['model'], window=window)
model_weights_no_masked = model_weights.copy()
# set the diagonal to inf so we always fit it
model_weights_no_masked[np.eye(model_weights_no_masked.shape[0], dtype=bool)] = np.inf
if pruning_method == 'exponential':
# find how many weights to remove as a fraction of the remaining values not masked
num_weights_remove = np.ceil(prune_frac * np.sum(current_mask)).astype(int)
# set the current masked weights to inf so that they're not counted among the smallest weights
model_weights_no_masked[~current_mask] = np.inf
elif pruning_method == 'linear':
# find the number of weights to remove as a linear fraction of all the weights in the mask
num_weights_remove = np.ceil((num_iter + 1) * prune_frac * current_mask.size).astype(int)
else:
raise Exception('pruning method not recognized')
# sort the absolute value of the weights and get the num-weights_remove smallest
cutoff_value = np.sort(np.abs(model_weights_no_masked).reshape(-1))[num_weights_remove - 1]
# keep all values larger than the cutoff
new_mask = np.abs(model_weights) > cutoff_value
new_mask[np.eye(new_mask.shape[0], dtype=bool)] = True
# set the masked values to 0 and update the mask
model_dict['model'].dynamics_weights[:dynamics_dim, :][np.tile(~new_mask, (1, model_dict['model'].dynamics_lags))] = 0
model_dict['model'].param_props['mask']['dynamics_weights'] = np.tile(new_mask, (1, dynamics_lags))
save_path_iter = save_folder / prune_folder_str / ('model_iter_' + f'{num_iter:03d}')
os.mkdir(save_path_iter)
else:
save_path_iter = None
# set all the learned data parameters
init_mean_train = model_dict['init_mean_train']
init_mean_test = model_dict['init_mean_test']
init_cov_train = model_dict['init_cov_train']
init_cov_test = model_dict['init_cov_test']
emissions_offset_train = model_dict['emissions_offset_train']
emissions_offset_test = model_dict['emissions_offset_test']
model_dict = \
run_fitting(run_params, model_dict['model'], data_train, data_test, save_path_iter,
emissions_offset_train=emissions_offset_train, emissions_offset_test=emissions_offset_test,
init_mean_train=init_mean_train, init_mean_test=init_mean_test,
init_cov_train=init_cov_train, init_cov_test=init_cov_test, plot_figs=False)
if cpu_id == 0:
# get the predicted IRFs from the model and compare them to the data
model_irms = lgssmu.calculate_stams(model_dict['model'], window=window, verbose=False)
model_score = met.nan_corr(data_irms, model_irms)[0]
error_frac = model_score / model_base_score
error_frac = comm.bcast(error_frac, root=0)
num_iter += 1
def run_fitting(run_params, model, data_train, data_test, save_folder, model_true=None, starting_step=0,
emissions_offset_train=None, emissions_offset_test=None,
init_mean_train=None, init_mean_test=None,
init_cov_train=None, init_cov_test=None, plot_figs=True):
comm = pkl5.Intracomm(MPI.COMM_WORLD)
size = comm.Get_size()
cpu_id = comm.Get_rank()
is_parallel = size > 1
# if memory gets to big, use memmap. Reduces speed but significantly reduces memory
if run_params['use_memmap']:
memmap_cpu_id = cpu_id
else:
memmap_cpu_id = None
if cpu_id == 0:
if emissions_offset_train is None:
emissions_offset_train = model.estimate_emissions_offset(data_train['emissions'])
if init_mean_train is None:
init_mean_train = model.estimate_init_mean(data_train['emissions'])
if init_cov_train is None:
init_cov_train = model.estimate_init_cov(data_train['emissions'])
# fit the model using expectation maximization
ll, model, emissions_offset_train, init_mean_train, init_cov_train = \
iu.fit_em(model, data_train, num_steps=run_params['num_train_steps'],
emissions_offset=emissions_offset_train, init_mean=init_mean_train, init_cov=init_cov_train,
save_folder=save_folder, memmap_cpu_id=memmap_cpu_id, starting_step=starting_step)
# sample from the model
if cpu_id == 0:
print('get posterior for the training data')
posterior_train = iu.parallel_get_post(model, data_train, emissions_offset=emissions_offset_train,
init_mean=init_mean_train, init_cov=init_cov_train,
max_iter=50, converge_res=1e-2, time_lim=1000,
memmap_cpu_id=memmap_cpu_id, infer_missing=False)
if cpu_id == 0:
print('get posterior for the test data')
posterior_test = iu.parallel_get_post(model, data_test, emissions_offset=emissions_offset_test,
init_mean=init_mean_test, init_cov=init_cov_test,
max_iter=50, converge_res=1e-2, time_lim=1000,
memmap_cpu_id=memmap_cpu_id, infer_missing=False)
if cpu_id == 0:
print('Finished posterior for test data')
lu.save_run(save_folder, model_trained=model, ep=-1, posterior_train=posterior_train,
posterior_test=posterior_test)
print('finished saving')
if run_params['use_memmap']:
for i in range(size):
os.remove('/tmp/filtered_covs_' + str(i) + '.tmp')
if not is_parallel and run_params['plot_figures'] and plot_figs:
am.plot_model_params(model, model_true=model_true)
model_trained = {'model': model,
'init_mean_train': posterior_train['init_mean'],
'init_mean_test': posterior_test['init_mean'],
'init_cov_train': posterior_train['init_cov'],
'init_cov_test': posterior_test['init_cov'],
'emissions_offset_train': posterior_train['emissions_offset'],
'emissions_offset_test': posterior_test['emissions_offset'],
}
else:
model_trained = {'model': None,
'init_mean_train': None,
'init_mean_test': None,
'init_cov_train': None,
'init_cov_test': None,
'emissions_offset_train': None,
'emissions_offset_test': None,
}
return model_trained