-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdocker-compose.AWS.yaml
54 lines (51 loc) · 2.1 KB
/
docker-compose.AWS.yaml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
version: "3"
services:
notebook: # Notebook
build:
context: ./notebook
volumes:
- /home/ubuntu/MSProject/multiple_sclerosis_proj/notebook/notebook_lib:/home/jovyan/work/notebook_lib
- /home/ubuntu/MSProject/multiple_sclerosis_proj/notebook/notebook_utils:/home/jovyan/work/notebook_utils
- /home/ubuntu/MSProject/multiple_sclerosis_proj/notebook/notebook_archive:/home/jovyan/work/notebook_archive
- /home/ubuntu/MSProject/multiple_sclerosis_proj/notebook/resultFiles:/home/jovyan/work/resultFiles
- /home/ubuntu/MSProject/multiple_sclerosis_proj/data:/home/jovyan/MainData
ports:
- 8888:8888
container_name: notebookContainer
pipelines: # Pipelines
image: swiri021/openkbc_msproject:pipelinecontainer1
deploy:
resources:
limits:
memory: 4000m
volumes:
- /home/ubuntu/MSProject/multiple_sclerosis_proj/pipelines:/pipelines
- /home/ubuntu/MSProject/multiple_sclerosis_proj/data:/MainData
- /home/ubuntu/MSProject/multiple_sclerosis_proj/notebook/resultFiles:/Output
- $HOME/.aws/credentials:/root/.aws/credentials:ro
ports:
- 80:5000
depends_on:
- redis
container_name: pipelineContainer
working_dir: /pipelines/pipeline_controller
command: conda run -n pipeline_controller_base gunicorn --bind 0.0.0.0:5000 --workers 2 --threads 4 --worker-class gthread connector:app
redis: # redis
image: redis:alpine
command: redis-server
ports:
- 6379:6379
container_name: redisServer
celery: # celery
image: swiri021/openkbc_msproject:celerycontainer1
volumes:
- /home/ubuntu/MSProject/multiple_sclerosis_proj/pipelines:/pipelines
- /home/ubuntu/MSProject/multiple_sclerosis_proj/data:/MainData
- /home/ubuntu/MSProject/multiple_sclerosis_proj/resultFiles:/Output
- $HOME/.aws/credentials:/root/.aws/credentials:ro
working_dir: /pipelines/pipeline_controller/
command: conda run -n pipeline_controller_base celery -A app.celery worker --loglevel=info
depends_on:
- redis
- pipelines
container_name: celeryContainer