-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPatchExtractTools.py
219 lines (187 loc) · 7.65 KB
/
PatchExtractTools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
# -*- coding: utf-8 -*-
"""
Created on Wed Nov 11 21:41:14 2020
@author: FG
"""
import numpy as np
import matplotlib.pyplot as plt
import array
from sklearn.metrics.pairwise import euclidean_distances
from manifold_utils.mSVD import eigen_calc_from_dist_mat
def Dnorm(X):
'''
Compute the D-norm of matrix X
'''
#Matrix D for computing D-norm
D = np.array([
[2, -1, 0, -1, 0, 0, 0, 0, 0],
[-1, 3, -1, 0, -1, 0, 0, 0, 0],
[0, -1, 2, 0, 0, -1, 0, 0, 0],
[-1, 0, 0, 3, -1, 0, -1, 0, 0],
[0, -1, 0, -1, 4, -1, 0, -1, 0],
[0, 0, -1, 0, -1, 3, 0, 0, -1],
[0, 0, 0, -1, 0, 0, 2, -1, 0],
[0, 0, 0, 0, -1, 0, -1, 3, -1],
[0, 0, 0, 0, 0, -1, 0, -1, 2]])
#sqrt(X^T D X)
Dn = np.sqrt((X.dot(D)*X).sum(axis=1))
return Dn
def DCT_Transform(b):
'''
Transform a vector x in the standard basis into the DCT basis
'''
#2-dimensional Discrete Cosine Transform (DCT) basis of a 3×3 image patch diagonalizes the matrix D
sqrt6 = np.sqrt(6)
sqrt54 = np.sqrt(54)
sqrt8 = np.sqrt(8)
sqrt48 = np.sqrt(48)
sqrt216 = np.sqrt(216)
#DCT is 8x9
DCT = np.array([
[1/sqrt6, 0, -1/sqrt6, 1/sqrt6, 0, -1/sqrt6, 1/sqrt6, 0, -1/sqrt6 ],
[1/sqrt6, 1/sqrt6, 1/sqrt6, 0, 0, 0, -1/sqrt6, -1/sqrt6, -1/sqrt6 ],
[1/sqrt54, -2/sqrt54, 1/sqrt54, 1/sqrt54, -2/sqrt54, 1/sqrt54, 1/sqrt54, -2/sqrt54, 1/sqrt54],
[1/sqrt54, 1/sqrt54, 1/sqrt54, -2/sqrt54, -2/sqrt54, -2/sqrt54, 1/sqrt54, 1/sqrt54, 1/sqrt54],
[1/sqrt8, 0, -1/sqrt8, 0, 0, 0, -1/sqrt8, 0, 1/sqrt8],
[1/sqrt48, 0, -1/sqrt48, -2/sqrt48, 0, 2/sqrt48, 1/sqrt48, 0, -1/sqrt48],
[1/sqrt48, -2/sqrt48, 1, 0, 0, 0, -1/sqrt48, 2/sqrt48, -1/sqrt48],
[1/sqrt216, -2/sqrt216, 1/sqrt216, -2/sqrt216, 4/sqrt216, -2/sqrt216, 1/sqrt216, -2/sqrt216, 1/sqrt216]
])
Lambda = np.diag(np.linalg.norm(DCT, ord=2, axis=1)**2)
#linear transformation
x = np.dot(np.matmul(Lambda, DCT), b)
return x
def fnameFix(fn):
'''
The numbers in the files are 5 digits.
Add 0 in front until we have 5 digits.
'''
while(len(fn) < 5):
fn = '0'+ fn
return fn
def PatExt(fn):
'''
Perform patch selections for a single images as detailed in carlsson
'''
#dimension of the images
nrow=1024
ncol=1536
#Load the image
fn = fnameFix(fn)
filename='iml_Images\imk'+ fn + '.iml'
s = open(filename, 'rb').read()
arr = array.array('H', s)
arr.byteswap()
img = np.array(arr, dtype='uint16').reshape(nrow, ncol)
#extract 5000 random 3x3 pathches.
#Note The two leftmost and the two rightmost pixel columns do not contain information
#iniate a matrix to store 5000 flattened 3x3 pathes (5000 samples with 9 features/coordinates)
Patches = np.zeros((5000,9))
#the rows and columns we can select from
rows = np.arange(1, nrow-1)
cols = np.arange(3, ncol-3)
for i in range(5000):
#select a random center
x = np.random.choice(rows)
y = np.random.choice(cols)
#stored the flattened patches
Patches[i,] = img[x-1:x+2, y-1:y+2].flatten()
#Compute the logarithm of intensity at each pixel.
Patches = np.log(Patches)
#Subtract an average of all coordinates from each coordinate.
colMeans = np.mean(Patches, axis=0)
Patches = Patches-colMeans
#compute D-norms for each vector and record the top 1000 D-norms
Dns = Dnorm(Patches)
hC_Indices = np.argsort(Dns)[-1000:]
#Store the normalized and DCT-transformed high contrast patches
hC_DCT_Patches = np.zeros((1000,8)) #7-dimensional sphere in R8
for i in range(1000):
im_ind = hC_Indices[i] #index of the i-th high contrast patches
hC_DCT_Patches[i] = DCT_Transform(Patches[im_ind,]/Dns[im_ind]) #DCT transform the normalized patches
return hC_DCT_Patches
def PatchesExtractions(numImages = 5):
'''
Perform patch selections for multiple images
'''
#Select numImages amount Images from 4212 images
img_indices = np.random.choice(np.arange(1, 4213), size=numImages, replace=False)
Patches = np.zeros((numImages*1000, 8))
for i in range(numImages):
fn = str(img_indices[i])
Patches[i*1000:(i+1)*1000] = PatExt(fn)
print(img_indices)
#Patches are 8 dimensional
#there are numImages*1000 patches, the matrix is numImages*1000 by 8.
np.save('3x3Patches', Patches)
return
def Denoise(k, Patches):
'''
Denoise the patches from images using kNN
k: size of the neighborhood
'''
nrow, ncol = Patches.shape
#create a matrix to stored the Denoised Patches
Denoised_Patches = np.zeros((nrow, ncol))
#Considering the rows as vectors, compute the distance matrix between each pair of vectors.
DistanceMatrix = euclidean_distances(Patches)
for i in range(nrow):
#find the indices of the kNN for the i-th data point
i_kNN_indices = np.argsort(DistanceMatrix[i,])[0:k]
#Update the value of the i-th data point with the average of its kNN
Denoised_Patches[i] = np.mean(Patches[i_kNN_indices,], axis=0)
return Denoised_Patches
def IterativeDenoise(k, fn, ite = 2):
'''
Iteratively denoise the patches from images using kNN
k: size of the neighborhood
ite: number of iteration
'''
Patches = np.load(fn)
for i in range(ite):
Patches = Denoise(k, Patches)
return Patches
'''
#Patches Extractions
PatchesExtractions(numImages = 10)
#Denoise and save
Denoised_Patches = IterativeDenoise(2, '3x3Patches.npy', ite = 2)
np.save('Denoised3x3Patches', Denoised_Patches)
'''
def eigen_plot(eigval_list,radii, R_min, R_max, logscale=False):
"""
This function plots the multidimensional eigenvalue list created from the eigen_calc function. X-axis corresponds to the radii value, while the y-axis corresponds to the eigenvalues. Each individual line represents a dimension.
Also, this function requires both the matplotlib and numpy packages.
Run the code: %matplotlib inline, when in jupyter notebook to display the plot in the notebook.
Parameters:
eigval_list (list): This is a multidimensional list containing eigenvalues at different radii values
radstart (int): the first radius value of the expanding sphere
radend (int): the final value (included) of the expanding spherical radius
radint (int): the interval (step size) at which the radius expands
"""
# Plot the eigenvalues
#radii = np.arange(radstart, radend + radint, radint) # creates an array of radii values to iterate through
eig_mat = np.stack(eigval_list, axis=0) # stacks eigenvalue list into an array (dimensions of N x D)
dim_eig_mat = np.shape(eig_mat) # saves dimensions of the eienvalue matrix for easy access
fig = plt.figure() # creates a figure plot
axes = fig.add_subplot(111) # adds x and y axes to the plot
if logscale:
axes.set_yscale('log')
for i in range(dim_eig_mat[1]): # iterates through the columns (dimensions) of the eigenvalue matrix
axes.plot(radii, eig_mat[:, i]) # plots eigenvalues (y-axis) against each radii value (x-axis)
st = "Manifold_radii" + str(np.random.randint(low=1, high = 1000)) + ".png"
plt.savefig(st, dpi=400)
return (plt.show())
def Image_ev_plot(Patches, dist_mat, center_id, log=True):
radii, eigval_list, _ = eigen_calc_from_dist_mat(Patches, dist_mat, center_id)
rmin = radii
rmax = radii
eigen_plot(eigval_list, radii, rmin, rmax, logscale=log)
'''
#load matrix
Patches = np.load('Denoised3x3Patches.npy')
dist_mat = euclidean_distances(Patches)
#do ev plot around c given by cid
cid = 5000
Image_ev_plot(Patches, dist_mat, cid)
'''