This repository has been archived by the owner on Sep 9, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 125
/
MultiStickSSDwithRealSense_OpenVINO_NCS2.py
executable file
·475 lines (394 loc) · 18.5 KB
/
MultiStickSSDwithRealSense_OpenVINO_NCS2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
import sys
if sys.version_info.major < 3 or sys.version_info.minor < 4:
print("Please using python3.4 or greater!")
sys.exit(1)
import pyrealsense2 as rs
import numpy as np
import cv2, io, time, argparse, re
from os import system
from os.path import isfile, join
from time import sleep
import multiprocessing as mp
try:
from armv7l.openvino.inference_engine import IENetwork, IEPlugin
except:
from openvino.inference_engine import IENetwork, IEPlugin
import heapq
import threading
pipeline = None
lastresults = None
threads = []
processes = []
frameBuffer = None
results = None
fps = ""
detectfps = ""
framecount = 0
detectframecount = 0
time1 = 0
time2 = 0
cam = None
camera_mode = 0
camera_width = 320
camera_height = 240
window_name = ""
background_transparent_mode = 0
ssd_detection_mode = 1
face_detection_mode = 0
elapsedtime = 0.0
background_img = None
depth_sensor = None
depth_scale = 1.0
align_to = None
align = None
LABELS = [['background',
'aeroplane', 'bicycle', 'bird', 'boat',
'bottle', 'bus', 'car', 'cat', 'chair',
'cow', 'diningtable', 'dog', 'horse',
'motorbike', 'person', 'pottedplant',
'sheep', 'sofa', 'train', 'tvmonitor'],
['background', 'face']]
def camThread(LABELS, results, frameBuffer, camera_mode, camera_width, camera_height, background_transparent_mode, background_img, vidfps):
global fps
global detectfps
global lastresults
global framecount
global detectframecount
global time1
global time2
global cam
global window_name
global depth_scale
global align_to
global align
# Configure depth and color streams
# Or
# Open USB Camera streams
if camera_mode == 0:
pipeline = rs.pipeline()
config = rs.config()
config.enable_stream(rs.stream.depth, 640, 480, rs.format.z16, vidfps)
config.enable_stream(rs.stream.color, 640, 480, rs.format.bgr8, vidfps)
profile = pipeline.start(config)
depth_sensor = profile.get_device().first_depth_sensor()
depth_scale = depth_sensor.get_depth_scale()
align_to = rs.stream.color
align = rs.align(align_to)
window_name = "RealSense"
elif camera_mode == 1:
cam = cv2.VideoCapture(0)
if cam.isOpened() != True:
print("USB Camera Open Error!!!")
sys.exit(0)
cam.set(cv2.CAP_PROP_FPS, vidfps)
cam.set(cv2.CAP_PROP_FRAME_WIDTH, camera_width)
cam.set(cv2.CAP_PROP_FRAME_HEIGHT, camera_height)
window_name = "USB Camera"
cv2.namedWindow(window_name, cv2.WINDOW_AUTOSIZE)
while True:
t1 = time.perf_counter()
# 0:= RealSense Mode
# 1:= USB Camera Mode
if camera_mode == 0:
# Wait for a coherent pair of frames: depth and color
frames = pipeline.wait_for_frames()
depth_frame = frames.get_depth_frame()
color_frame = frames.get_color_frame()
if not depth_frame or not color_frame:
continue
if frameBuffer.full():
frameBuffer.get()
color_image = np.asanyarray(color_frame.get_data())
elif camera_mode == 1:
# USB Camera Stream Read
s, color_image = cam.read()
if not s:
continue
if frameBuffer.full():
frameBuffer.get()
frames = color_image
height = color_image.shape[0]
width = color_image.shape[1]
frameBuffer.put(color_image.copy())
res = None
if not results.empty():
res = results.get(False)
detectframecount += 1
imdraw = overlay_on_image(frames, res, LABELS, camera_mode, background_transparent_mode,
background_img, depth_scale=depth_scale, align=align)
lastresults = res
else:
imdraw = overlay_on_image(frames, lastresults, LABELS, camera_mode, background_transparent_mode,
background_img, depth_scale=depth_scale, align=align)
cv2.imshow(window_name, cv2.resize(imdraw, (width, height)))
if cv2.waitKey(1)&0xFF == ord('q'):
# Stop streaming
if pipeline != None:
pipeline.stop()
sys.exit(0)
## Print FPS
framecount += 1
if framecount >= 15:
fps = "(Playback) {:.1f} FPS".format(time1/15)
detectfps = "(Detection) {:.1f} FPS".format(detectframecount/time2)
framecount = 0
detectframecount = 0
time1 = 0
time2 = 0
t2 = time.perf_counter()
elapsedTime = t2-t1
time1 += 1/elapsedTime
time2 += elapsedTime
# l = Search list
# x = Search target value
def searchlist(l, x, notfoundvalue=-1):
if x in l:
return l.index(x)
else:
return notfoundvalue
def async_infer(ncsworker):
#ncsworker.skip_frame_measurement()
while True:
ncsworker.predict_async()
class NcsWorker(object):
def __init__(self, devid, frameBuffer, results, camera_mode, camera_width, camera_height, number_of_ncs, vidfps, skpfrm):
self.devid = devid
self.frameBuffer = frameBuffer
self.model_xml = "./lrmodel/MobileNetSSD/MobileNetSSD_deploy.xml"
self.model_bin = "./lrmodel/MobileNetSSD/MobileNetSSD_deploy.bin"
self.camera_width = camera_width
self.camera_height = camera_height
self.num_requests = 4
self.inferred_request = [0] * self.num_requests
self.heap_request = []
self.inferred_cnt = 0
self.plugin = IEPlugin(device="MYRIAD")
self.net = IENetwork(model=self.model_xml, weights=self.model_bin)
self.input_blob = next(iter(self.net.inputs))
self.exec_net = self.plugin.load(network=self.net, num_requests=self.num_requests)
self.results = results
self.camera_mode = camera_mode
self.number_of_ncs = number_of_ncs
if self.camera_mode == 0:
self.skip_frame = skpfrm
else:
self.skip_frame = 0
self.roop_frame = 0
self.vidfps = vidfps
def image_preprocessing(self, color_image):
prepimg = cv2.resize(color_image, (300, 300))
prepimg = prepimg - 127.5
prepimg = prepimg * 0.007843
prepimg = prepimg[np.newaxis, :, :, :] # Batch size axis add
prepimg = prepimg.transpose((0, 3, 1, 2)) # NHWC to NCHW
return prepimg
def predict_async(self):
try:
if self.frameBuffer.empty():
return
self.roop_frame += 1
if self.roop_frame <= self.skip_frame:
self.frameBuffer.get()
return
self.roop_frame = 0
prepimg = self.image_preprocessing(self.frameBuffer.get())
reqnum = searchlist(self.inferred_request, 0)
if reqnum > -1:
self.exec_net.start_async(request_id=reqnum, inputs={self.input_blob: prepimg})
self.inferred_request[reqnum] = 1
self.inferred_cnt += 1
if self.inferred_cnt == sys.maxsize:
self.inferred_request = [0] * self.num_requests
self.heap_request = []
self.inferred_cnt = 0
heapq.heappush(self.heap_request, (self.inferred_cnt, reqnum))
cnt, dev = heapq.heappop(self.heap_request)
if self.exec_net.requests[dev].wait(0) == 0:
self.exec_net.requests[dev].wait(-1)
out = self.exec_net.requests[dev].outputs["detection_out"].flatten()
self.results.put([out])
self.inferred_request[dev] = 0
else:
heapq.heappush(self.heap_request, (cnt, dev))
except:
import traceback
traceback.print_exc()
def inferencer(results, frameBuffer, ssd_detection_mode, face_detection_mode, camera_mode, camera_width, camera_height, number_of_ncs, vidfps, skpfrm):
# Init infer threads
threads = []
for devid in range(number_of_ncs):
thworker = threading.Thread(target=async_infer, args=(NcsWorker(devid, frameBuffer, results, camera_mode, camera_width, camera_height, number_of_ncs, vidfps, skpfrm),))
thworker.start()
threads.append(thworker)
for th in threads:
th.join()
def overlay_on_image(frames, object_infos, LABELS, camera_mode, background_transparent_mode, background_img, depth_scale=1.0, align=None):
try:
# 0:=RealSense Mode, 1:=USB Camera Mode
if camera_mode == 0:
# 0:= No background transparent, 1:= Background transparent
if background_transparent_mode == 0:
depth_frame = frames.get_depth_frame()
color_frame = frames.get_color_frame()
elif background_transparent_mode == 1:
aligned_frames = align.process(frames)
depth_frame = aligned_frames.get_depth_frame()
color_frame = aligned_frames.get_color_frame()
depth_dist = depth_frame.as_depth_frame()
depth_image = np.asanyarray(depth_frame.get_data())
color_image = np.asanyarray(color_frame.get_data())
elif camera_mode == 1:
color_image = frames
if isinstance(object_infos, type(None)):
# 0:= No background transparent, 1:= Background transparent
if background_transparent_mode == 0:
return color_image
elif background_transparent_mode == 1:
return background_img
# Show images
height = color_image.shape[0]
width = color_image.shape[1]
entire_pixel = height * width
occupancy_threshold = 0.9
if background_transparent_mode == 0:
img_cp = color_image.copy()
elif background_transparent_mode == 1:
img_cp = background_img.copy()
for (object_info, LABEL) in zip(object_infos, LABELS):
drawing_initial_flag = True
for box_index in range(100):
if object_info[box_index + 1] == 0.0:
break
base_index = box_index * 7
if (not np.isfinite(object_info[base_index]) or
not np.isfinite(object_info[base_index + 1]) or
not np.isfinite(object_info[base_index + 2]) or
not np.isfinite(object_info[base_index + 3]) or
not np.isfinite(object_info[base_index + 4]) or
not np.isfinite(object_info[base_index + 5]) or
not np.isfinite(object_info[base_index + 6])):
continue
x1 = max(0, int(object_info[base_index + 3] * height))
y1 = max(0, int(object_info[base_index + 4] * width))
x2 = min(height, int(object_info[base_index + 5] * height))
y2 = min(width, int(object_info[base_index + 6] * width))
object_info_overlay = object_info[base_index:base_index + 7]
# 0:= No background transparent, 1:= Background transparent
if background_transparent_mode == 0:
min_score_percent = 60
elif background_transparent_mode == 1:
min_score_percent = 20
source_image_width = width
source_image_height = height
base_index = 0
class_id = object_info_overlay[base_index + 1]
percentage = int(object_info_overlay[base_index + 2] * 100)
if (percentage <= min_score_percent):
continue
box_left = int(object_info_overlay[base_index + 3] * source_image_width)
box_top = int(object_info_overlay[base_index + 4] * source_image_height)
box_right = int(object_info_overlay[base_index + 5] * source_image_width)
box_bottom = int(object_info_overlay[base_index + 6] * source_image_height)
# 0:=RealSense Mode, 1:=USB Camera Mode
if camera_mode == 0:
meters = depth_dist.get_distance(box_left+int((box_right-box_left)/2), box_top+int((box_bottom-box_top)/2))
label_text = LABEL[int(class_id)] + " (" + str(percentage) + "%)"+ " {:.2f}".format(meters) + " meters away"
elif camera_mode == 1:
label_text = LABEL[int(class_id)] + " (" + str(percentage) + "%)"
# 0:= No background transparent, 1:= Background transparent
if background_transparent_mode == 0:
box_color = (255, 128, 0)
box_thickness = 1
cv2.rectangle(img_cp, (box_left, box_top), (box_right, box_bottom), box_color, box_thickness)
label_background_color = (125, 175, 75)
label_text_color = (255, 255, 255)
label_size = cv2.getTextSize(label_text, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)[0]
label_left = box_left
label_top = box_top - label_size[1]
if (label_top < 1):
label_top = 1
label_right = label_left + label_size[0]
label_bottom = label_top + label_size[1]
cv2.rectangle(img_cp, (label_left - 1, label_top - 1), (label_right + 1, label_bottom + 1), label_background_color, -1)
cv2.putText(img_cp, label_text, (label_left, label_bottom), cv2.FONT_HERSHEY_SIMPLEX, 0.5, label_text_color, 1)
elif background_transparent_mode == 1:
clipping_distance = (meters+0.05) / depth_scale
depth_image_3d = np.dstack((depth_image, depth_image, depth_image))
fore = np.where((depth_image_3d > clipping_distance) | (depth_image_3d <= 0), 0, color_image)
area = abs(box_bottom - box_top) * abs(box_right - box_left)
occupancy = area / entire_pixel
if occupancy <= occupancy_threshold:
if drawing_initial_flag == True:
img_cp = fore
drawing_initial_flag = False
else:
img_cp[box_top:box_bottom, box_left:box_right] = cv2.addWeighted(img_cp[box_top:box_bottom, box_left:box_right],
0.85,
fore[box_top:box_bottom, box_left:box_right],
0.85,
0)
cv2.putText(img_cp, fps, (width-170,15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (38,0,255), 1, cv2.LINE_AA)
cv2.putText(img_cp, detectfps, (width-170,30), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (38,0,255), 1, cv2.LINE_AA)
return img_cp
except:
import traceback
traceback.print_exc()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('-mod','--mode',dest='camera_mode',type=int,default=0,help='Camera Mode. (0:=RealSense Mode, 1:=USB Camera Mode. Defalut=0)')
parser.add_argument('-wd','--width',dest='camera_width',type=int,default=320,help='Width of the frames in the video stream. (USB Camera Mode Only. Default=320)')
parser.add_argument('-ht','--height',dest='camera_height',type=int,default=240,help='Height of the frames in the video stream. (USB Camera Mode Only. Default=240)')
parser.add_argument('-tp','--transparent',dest='background_transparent_mode',type=int,default=0,help='TransparentMode. (RealSense Mode Only. 0:=No background transparent, 1:=Background transparent)')
parser.add_argument('-sd','--ssddetection',dest='ssd_detection_mode',type=int,default=1,help='[Future functions] SSDDetectionMode. (0:=Disabled, 1:=Enabled Default=1)')
parser.add_argument('-fd','--facedetection',dest='face_detection_mode',type=int,default=0,help='[Future functions] FaceDetectionMode. (0:=Disabled, 1:=Full, 2:=Short Default=0)')
parser.add_argument('-numncs','--numberofncs',dest='number_of_ncs',type=int,default=1,help='Number of NCS. (Default=1)')
parser.add_argument('-vidfps','--fpsofvideo',dest='fps_of_video',type=int,default=30,help='FPS of Video. (USB Camera Mode Only. Default=30)')
parser.add_argument('-skpfrm','--skipframe',dest='number_of_frame_skip',type=int,default=7,help='Number of frame skip. (RealSense Mode Only. Default=7)')
args = parser.parse_args()
camera_mode = args.camera_mode
camera_width = args.camera_width
camera_height = args.camera_height
background_transparent_mode = args.background_transparent_mode
ssd_detection_mode = args.ssd_detection_mode
face_detection_mode = args.face_detection_mode
number_of_ncs = args.number_of_ncs
vidfps = args.fps_of_video
skpfrm = args.number_of_frame_skip
# 0:=RealSense Mode, 1:=USB Camera Mode
if camera_mode != 0 and camera_mode != 1:
print("Camera Mode Error!! " + str(camera_mode))
sys.exit(0)
if camera_mode != 0 and background_transparent_mode == 1:
background_transparent_mode = 0
if background_transparent_mode == 1:
background_img = np.zeros((camera_height, camera_width, 3), dtype=np.uint8)
if face_detection_mode != 0:
ssd_detection_mode = 0
if ssd_detection_mode == 0 and face_detection_mode != 0:
del(LABELS[0])
try:
mp.set_start_method('forkserver')
frameBuffer = mp.Queue(10)
results = mp.Queue()
# Start streaming
p = mp.Process(target=camThread,
args=(LABELS, results, frameBuffer, camera_mode, camera_width, camera_height, background_transparent_mode, background_img, vidfps),
daemon=True)
p.start()
processes.append(p)
# Start detection MultiStick
# Activation of inferencer
p = mp.Process(target=inferencer,
args=(results, frameBuffer, ssd_detection_mode, face_detection_mode, camera_mode, camera_width, camera_height, number_of_ncs, vidfps, skpfrm),
daemon=True)
p.start()
processes.append(p)
while True:
sleep(1)
except:
import traceback
traceback.print_exc()
finally:
for p in range(len(processes)):
processes[p].terminate()
print("\n\nFinished\n\n")