-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathMultiStickSSD.py
executable file
·279 lines (219 loc) · 8.04 KB
/
MultiStickSSD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import sys
graph_folder="./"
if sys.version_info.major < 3 or sys.version_info.minor < 4:
print("Please using python3.4 or greater!")
exit(1)
if len(sys.argv) > 1:
graph_folder = sys.argv[1]
from mvnc import mvncapi as mvnc
import numpy as np
import cv2
from os import system
import io, time
from os.path import isfile, join
from queue import Queue
from threading import Thread, Event, Lock
import re
from time import sleep
from OpenGL.GL import *
from OpenGL.GLU import *
from OpenGL.GLUT import *
mvnc.global_set_option(mvnc.GlobalOption.RW_LOG_LEVEL, 2)
devices = mvnc.enumerate_devices()
if len(devices) == 0:
print("No devices found")
quit()
print(len(devices))
devHandle = []
graph = []
graphHandle = []
with open(join(graph_folder, "graph"), mode="rb") as f:
graph_buffer = f.read()
for devnum in range(len(devices)):
graph.append(mvnc.Graph('MobileNet-SSD'+str(devnum)))
devHandle.append(mvnc.Device(devices[devnum]))
devHandle[devnum].open()
graphHandle.append(graph[devnum].allocate_with_fifos(devHandle[devnum], graph_buffer))
print("\nLoaded Graphs!!!")
cam = cv2.VideoCapture(0)
#cam = cv2.VideoCapture('/home/pi/MobileNet-SSD/xxxx.mp4')
if cam.isOpened() != True:
print("Camera/Movie Open Error!!!")
quit()
windowWidth = 320
windowHeight = 240
cam.set(cv2.CAP_PROP_FRAME_WIDTH, windowWidth)
cam.set(cv2.CAP_PROP_FRAME_HEIGHT, windowHeight)
lock = Lock()
frameBuffer = []
results = Queue()
lastresults = None
fps = ""
LABELS = ('background',
'aeroplane', 'bicycle', 'bird', 'boat',
'bottle', 'bus', 'car', 'cat', 'chair',
'cow', 'diningtable', 'dog', 'horse',
'motorbike', 'person', 'pottedplant',
'sheep', 'sofa', 'train', 'tvmonitor')
def init():
glClearColor(0.7, 0.7, 0.7, 0.7)
def idle():
glutPostRedisplay()
def resizeview(w, h):
glViewport(0, 0, w, h)
glLoadIdentity()
#glOrtho(-w / 1920, w / 1920, -h / 1080, h / 1080, -1.0, 1.0)
glOrtho(-w / 640, w / 640, -h / 480, h / 480, -1.0, 1.0)
def keyboard(key, x, y):
key = key.decode('utf-8')
if key == 'q':
lock.acquire()
while len(frameBuffer) > 0:
frameBuffer.pop()
lock.release()
for devnum in range(len(devices)):
graphHandle[devnum].DeallocateGraph()
devHandle[devnum].CloseDevice()
print("\n\nFinished\n\n")
sys.exit()
def camThread():
t1 = time.perf_counter()
global lastresults
global fps
s, img = cam.read()
if not s:
print("Could not get frame")
return 0
lock.acquire()
if len(frameBuffer)>10:
del frameBuffer[0]
frameBuffer.append(img)
lock.release()
res = None
if not results.empty():
res = results.get(False)
img = overlay_on_image(img, res)
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
h, w = img.shape[:2]
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, w, h, 0, GL_RGB, GL_UNSIGNED_BYTE, img)
lastresults = res
else:
imdraw = overlay_on_image(img, lastresults)
imdraw = cv2.cvtColor(imdraw, cv2.COLOR_BGR2RGB)
h, w = imdraw.shape[:2]
glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, w, h, 0, GL_RGB, GL_UNSIGNED_BYTE, imdraw)
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT)
glColor3f(1.0, 1.0, 1.0)
glEnable(GL_TEXTURE_2D)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR)
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR)
glBegin(GL_QUADS)
glTexCoord2d(0.0, 1.0)
glVertex3d(-1.0, -1.0, 0.0)
glTexCoord2d(1.0, 1.0)
glVertex3d( 1.0, -1.0, 0.0)
glTexCoord2d(1.0, 0.0)
glVertex3d( 1.0, 1.0, 0.0)
glTexCoord2d(0.0, 0.0)
glVertex3d(-1.0, 1.0, 0.0)
glEnd()
glFlush()
glutSwapBuffers()
## Print FPS
t2 = time.perf_counter()
time1 = (t2-t1)
fps = " {:.1f} FPS".format(1/time1)
def inferencer(results, lock, frameBuffer, graph, handle):
failure = 0
sleep(1)
while failure < 100:
lock.acquire()
if len(frameBuffer) == 0:
lock.release()
failure += 1
continue
img = frameBuffer[-1].copy()
del frameBuffer[-1]
failure = 0
lock.release()
im = preprocess_image(img)
graph.queue_inference_with_fifo_elem(handle[0], handle[1], im.astype(np.float32), img)
out, _ = handle[1].read_elem()
results.put(out)
def preprocess_image(src):
img = cv2.resize(src, (300, 300))
img = img - 127.5
img = img * 0.007843
return img
def overlay_on_image(display_image, object_info):
global fps
if isinstance(object_info, type(None)):
return display_image
num_valid_boxes = int(object_info[0])
img_cp = display_image.copy()
if num_valid_boxes > 0:
for box_index in range(num_valid_boxes):
base_index = 7+ box_index * 7
if (not np.isfinite(object_info[base_index]) or
not np.isfinite(object_info[base_index + 1]) or
not np.isfinite(object_info[base_index + 2]) or
not np.isfinite(object_info[base_index + 3]) or
not np.isfinite(object_info[base_index + 4]) or
not np.isfinite(object_info[base_index + 5]) or
not np.isfinite(object_info[base_index + 6])):
continue
x1 = max(0, int(object_info[base_index + 3] * img_cp.shape[0]))
y1 = max(0, int(object_info[base_index + 4] * img_cp.shape[1]))
x2 = min(img_cp.shape[0], int(object_info[base_index + 5] * img_cp.shape[0]))
y2 = min(img_cp.shape[1], int(object_info[base_index + 6] * img_cp.shape[1]))
x1_ = str(x1)
y1_ = str(y1)
x2_ = str(x2)
y2_ = str(y2)
object_info_overlay = object_info[base_index:base_index + 7]
min_score_percent = 75
source_image_width = img_cp.shape[1]
source_image_height = img_cp.shape[0]
base_index = 0
class_id = object_info_overlay[base_index + 1]
percentage = int(object_info_overlay[base_index + 2] * 100)
if (percentage <= min_score_percent):
continue
label_text = LABELS[int(class_id)] + " (" + str(percentage) + "%)"
box_left = int(object_info_overlay[base_index + 3] * source_image_width)
box_top = int(object_info_overlay[base_index + 4] * source_image_height)
box_right = int(object_info_overlay[base_index + 5] * source_image_width)
box_bottom = int(object_info_overlay[base_index + 6] * source_image_height)
box_color = (255, 128, 0)
box_thickness = 1
cv2.rectangle(img_cp, (box_left, box_top), (box_right, box_bottom), box_color, box_thickness)
label_background_color = (125, 175, 75)
label_text_color = (255, 255, 255)
label_size = cv2.getTextSize(label_text, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)[0]
label_left = box_left
label_top = box_top - label_size[1]
if (label_top < 1):
label_top = 1
label_right = label_left + label_size[0]
label_bottom = label_top + label_size[1]
cv2.rectangle(img_cp, (label_left - 1, label_top - 1), (label_right + 1, label_bottom + 1), label_background_color, -1)
cv2.putText(img_cp, label_text, (label_left, label_bottom), cv2.FONT_HERSHEY_SIMPLEX, 0.5, label_text_color, 1)
cv2.putText(img_cp, fps, (235,15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (38,0,255), 1, cv2.LINE_AA)
return img_cp
glutInitWindowPosition(0, 0)
glutInit(sys.argv)
glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE )
glutCreateWindow("DEMO")
glutFullScreen()
glutDisplayFunc(camThread)
glutReshapeFunc(resizeview)
glutKeyboardFunc(keyboard)
init()
glutIdleFunc(idle)
print("press 'q' to quit!\n")
threads = []
for devnum in range(len(devices)):
t = Thread(target=inferencer, args=(results, lock, frameBuffer, graph[devnum], graphHandle[devnum]))
t.start()
threads.append(t)
glutMainLoop()