-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathopenvino-usbcamera-cpu-ncs2-async.py
464 lines (379 loc) · 17.4 KB
/
openvino-usbcamera-cpu-ncs2-async.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
import sys
import os
import numpy as np
import cv2
from os import system
import io
import time
from os.path import isfile
from os.path import join
import re
import argparse
import platform
try:
from armv7l.openvino.inference_engine import IENetwork, IEPlugin
except:
from openvino.inference_engine import IENetwork, IEPlugin
import multiprocessing as mp
from time import sleep
import threading
import heapq
def getKeypoints(probMap, threshold=0.1):
mapSmooth = cv2.GaussianBlur(probMap, (3, 3), 0, 0)
mapMask = np.uint8(mapSmooth>threshold)
keypoints = []
contours = None
try:
#OpenCV4.x
contours, _ = cv2.findContours(mapMask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
except:
#OpenCV3.x
_, contours, _ = cv2.findContours(mapMask, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
for cnt in contours:
blobMask = np.zeros(mapMask.shape)
blobMask = cv2.fillConvexPoly(blobMask, cnt, 1)
maskedProbMap = mapSmooth * blobMask
_, maxVal, _, maxLoc = cv2.minMaxLoc(maskedProbMap)
keypoints.append(maxLoc + (probMap[maxLoc[1], maxLoc[0]],))
return keypoints
def getValidPairs(detected_keypoints, outputs, w, h):
valid_pairs = []
invalid_pairs = []
n_interp_samples = 10
paf_score_th = 0.1
conf_th = 0.7
for k in range(len(mapIdx)):
pafA = outputs[0, mapIdx[k][0], :, :]
pafB = outputs[0, mapIdx[k][1], :, :]
pafA = cv2.resize(pafA, (w, h))
pafB = cv2.resize(pafB, (w, h))
candA = detected_keypoints[POSE_PAIRS[k][0]]
candB = detected_keypoints[POSE_PAIRS[k][1]]
nA = len(candA)
nB = len(candB)
if( nA != 0 and nB != 0):
valid_pair = np.zeros((0,3))
for i in range(nA):
max_j=-1
maxScore = -1
found = 0
for j in range(nB):
d_ij = np.subtract(candB[j][:2], candA[i][:2])
norm = np.linalg.norm(d_ij)
if norm:
d_ij = d_ij / norm
else:
continue
interp_coord = list(zip(np.linspace(candA[i][0], candB[j][0], num=n_interp_samples),
np.linspace(candA[i][1], candB[j][1], num=n_interp_samples)))
paf_interp = []
for k in range(len(interp_coord)):
paf_interp.append([pafA[int(round(interp_coord[k][1])), int(round(interp_coord[k][0]))],
pafB[int(round(interp_coord[k][1])), int(round(interp_coord[k][0]))] ])
paf_scores = np.dot(paf_interp, d_ij)
avg_paf_score = sum(paf_scores)/len(paf_scores)
if ( len(np.where(paf_scores > paf_score_th)[0]) / n_interp_samples ) > conf_th :
if avg_paf_score > maxScore:
max_j = j
maxScore = avg_paf_score
found = 1
if found:
valid_pair = np.append(valid_pair, [[candA[i][3], candB[max_j][3], maxScore]], axis=0)
valid_pairs.append(valid_pair)
else:
invalid_pairs.append(k)
valid_pairs.append([])
return valid_pairs, invalid_pairs
def getPersonwiseKeypoints(valid_pairs, invalid_pairs, keypoints_list):
personwiseKeypoints = -1 * np.ones((0, 19))
for k in range(len(mapIdx)):
if k not in invalid_pairs:
partAs = valid_pairs[k][:,0]
partBs = valid_pairs[k][:,1]
indexA, indexB = np.array(POSE_PAIRS[k])
for i in range(len(valid_pairs[k])):
found = 0
person_idx = -1
for j in range(len(personwiseKeypoints)):
if personwiseKeypoints[j][indexA] == partAs[i]:
person_idx = j
found = 1
break
if found:
personwiseKeypoints[person_idx][indexB] = partBs[i]
personwiseKeypoints[person_idx][-1] += keypoints_list[partBs[i].astype(int), 2] + valid_pairs[k][i][2]
elif not found and k < 17:
row = -1 * np.ones(19)
row[indexA] = partAs[i]
row[indexB] = partBs[i]
row[-1] = sum(keypoints_list[valid_pairs[k][i,:2].astype(int), 2]) + valid_pairs[k][i][2]
personwiseKeypoints = np.vstack([personwiseKeypoints, row])
return personwiseKeypoints
processes = []
fps = ""
detectfps = ""
framecount = 0
detectframecount = 0
time1 = 0
time2 = 0
lastresults = None
keypointsMapping = ['Nose', 'Neck', 'R-Sho', 'R-Elb', 'R-Wr', 'L-Sho', 'L-Elb', 'L-Wr', 'R-Hip', 'R-Knee', 'R-Ank', 'L-Hip', 'L-Knee', 'L-Ank', 'R-Eye', 'L-Eye', 'R-Ear', 'L-Ear']
POSE_PAIRS = [[1,2], [1,5], [2,3], [3,4], [5,6], [6,7], [1,8], [8,9], [9,10], [1,11], [11,12], [12,13], [1,0], [0,14], [14,16], [0,15], [15,17], [2,17], [5,16]]
mapIdx = [[31,32], [39,40], [33,34], [35,36], [41,42], [43,44], [19,20], [21,22], [23,24], [25,26], [27,28], [29,30], [47,48], [49,50], [53,54], [51,52], [55,56], [37,38], [45,46]]
colors = [[0,100,255], [0,100,255], [0,255,255], [0,100,255], [0,255,255], [0,100,255], [0,255,0], [255,200,100], [255,0,255], [0,255,0], [255,200,100], [255,0,255], [0,0,255], [255,0,0], [200,200,0], [255,0,0], [200,200,0], [0,0,0]]
def image_preprocessing(color_image, w, h, new_w, new_h):
resized_image = cv2.resize(color_image, (new_w, new_h), interpolation = cv2.INTER_CUBIC)
canvas = np.full((h, w, 3), 128)
canvas[(h-new_h)//2:(h-new_h)//2 + new_h,(w-new_w)//2:(w-new_w)//2 + new_w, :] = resized_image
return canvas
def camThread(results, frameBuffer, camera_width, camera_height, vidfps, nPoints, w, h, new_w, new_h):
global fps
global detectfps
global lastresults
global framecount
global detectframecount
global time1
global time2
global cam
global window_name
cam = cv2.VideoCapture(0)
if cam.isOpened() != True:
print("USB Camera Open Error!!!")
sys.exit(0)
cam.set(cv2.CAP_PROP_FPS, vidfps)
cam.set(cv2.CAP_PROP_FRAME_WIDTH, camera_width)
cam.set(cv2.CAP_PROP_FRAME_HEIGHT, camera_height)
window_name = "USB Camera"
wait_key_time = 1
cv2.namedWindow(window_name, cv2.WINDOW_AUTOSIZE)
while True:
t1 = time.perf_counter()
# USB Camera Stream Read
s, color_image = cam.read()
if not s:
continue
if frameBuffer.full():
frameBuffer.get()
color_image = image_preprocessing(color_image.copy(), w, h, new_w, new_h)
frameClone = np.uint8(color_image.copy())
frameBuffer.put(color_image)
if not results.empty():
detected_keypoints, outputs, keypoints_list = results.get(False)
detectframecount += 1
for i in range(nPoints):
for j in range(len(detected_keypoints[i])):
cv2.circle(frameClone, detected_keypoints[i][j][0:2], 5, colors[i], -1, cv2.LINE_AA)
valid_pairs, invalid_pairs = getValidPairs(detected_keypoints, outputs, w, h)
personwiseKeypoints = getPersonwiseKeypoints(valid_pairs, invalid_pairs, keypoints_list)
for i in range(17):
for n in range(len(personwiseKeypoints)):
index = personwiseKeypoints[n][np.array(POSE_PAIRS[i])]
if -1 in index:
continue
B = np.int32(keypoints_list[index.astype(int), 0])
A = np.int32(keypoints_list[index.astype(int), 1])
cv2.line(frameClone, (B[0], A[0]), (B[1], A[1]), colors[i], 3, cv2.LINE_AA)
cv2.putText(frameClone, fps, (w-170,15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (38,0,255), 1, cv2.LINE_AA)
lastresults = [detected_keypoints, outputs, keypoints_list]
else:
if not isinstance(lastresults, type(None)):
detected_keypoints, outputs, keypoints_list = lastresults
for i in range(nPoints):
for j in range(len(detected_keypoints[i])):
cv2.circle(frameClone, detected_keypoints[i][j][0:2], 5, colors[i], -1, cv2.LINE_AA)
valid_pairs, invalid_pairs = getValidPairs(detected_keypoints, outputs, w, h)
personwiseKeypoints = getPersonwiseKeypoints(valid_pairs, invalid_pairs, keypoints_list)
for i in range(17):
for n in range(len(personwiseKeypoints)):
index = personwiseKeypoints[n][np.array(POSE_PAIRS[i])]
if -1 in index:
continue
B = np.int32(keypoints_list[index.astype(int), 0])
A = np.int32(keypoints_list[index.astype(int), 1])
cv2.line(frameClone, (B[0], A[0]), (B[1], A[1]), colors[i], 3, cv2.LINE_AA)
cv2.putText(frameClone, fps, (w-170,15), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (38,0,255), 1, cv2.LINE_AA)
cv2.putText(frameClone, detectfps, (w-170,30), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (38,0,255), 1, cv2.LINE_AA)
cv2.imshow(window_name, frameClone)
if cv2.waitKey(wait_key_time)&0xFF == ord('q'):
sys.exit(0)
## Print FPS
framecount += 1
if framecount >= 15:
fps = "(Playback) {:.1f} FPS".format(time1/15)
detectfps = "(Detection) {:.1f} FPS".format(detectframecount/time2)
framecount = 0
detectframecount = 0
time1 = 0
time2 = 0
t2 = time.perf_counter()
elapsedTime = t2-t1
time1 += 1/elapsedTime
time2 += elapsedTime
# l = Search list
# x = Search target value
def searchlist(l, x, notfoundvalue=-1):
if x in l:
return l.index(x)
else:
return notfoundvalue
def async_infer(ncsworker):
#ncsworker.skip_frame_measurement()
while True:
ncsworker.predict_async()
class NcsWorker(object):
def __init__(self, devid, device, model_xml, frameBuffer, results, camera_width, camera_height, number_of_ncs, vidfps, nPoints, w, h, new_w, new_h):
self.devid = devid
self.frameBuffer = frameBuffer
self.model_xml = model_xml
self.model_bin = os.path.splitext(model_xml)[0] + ".bin"
self.camera_width = camera_width
self.camera_height = camera_height
self.threshold = 0.1
self.nPoints = nPoints
self.num_requests = 4
self.inferred_request = [0] * self.num_requests
self.heap_request = []
self.inferred_cnt = 0
self.plugin = IEPlugin(device=device)
if "CPU" == device:
if platform.processor() == "x86_64":
self.plugin.add_cpu_extension("lib/libcpu_extension.so")
self.net = IENetwork(model=self.model_xml, weights=self.model_bin)
self.input_blob = next(iter(self.net.inputs))
self.exec_net = self.plugin.load(network=self.net, num_requests=self.num_requests)
self.results = results
self.number_of_ncs = number_of_ncs
self.predict_async_time = 250
self.skip_frame = 0
self.roop_frame = 0
self.vidfps = vidfps
self.w = w #432
self.h = h #368
self.new_w = new_w
self.new_h = new_h
def skip_frame_measurement(self):
surplustime_per_second = (1000 - self.predict_async_time)
if surplustime_per_second > 0.0:
frame_per_millisecond = (1000 / self.vidfps)
total_skip_frame = surplustime_per_second / frame_per_millisecond
self.skip_frame = int(total_skip_frame / self.num_requests)
else:
self.skip_frame = 0
def predict_async(self):
try:
if self.frameBuffer.empty():
return
self.roop_frame += 1
if self.roop_frame <= self.skip_frame:
self.frameBuffer.get()
return
self.roop_frame = 0
prepimg = self.frameBuffer.get()
reqnum = searchlist(self.inferred_request, 0)
if reqnum > -1:
prepimg = prepimg[np.newaxis, :, :, :] # Batch size axis add
prepimg = prepimg.transpose((0, 3, 1, 2)) # NHWC to NCHW, (1, 3, 368, 432)
self.exec_net.start_async(request_id=reqnum, inputs={self.input_blob: prepimg})
self.inferred_request[reqnum] = 1
self.inferred_cnt += 1
if self.inferred_cnt == sys.maxsize:
self.inferred_request = [0] * self.num_requests
self.heap_request = []
self.inferred_cnt = 0
heapq.heappush(self.heap_request, (self.inferred_cnt, reqnum))
try:
cnt, dev = heapq.heappop(self.heap_request)
except:
return
if self.exec_net.requests[dev].wait(0) == 0:
self.exec_net.requests[dev].wait(-1)
detected_keypoints = []
keypoints_list = np.zeros((0, 3))
keypoint_id = 0
outputs = self.exec_net.requests[dev].outputs["Openpose/concat_stage7"]
for part in range(self.nPoints):
probMap = outputs[0, part, :, :]
probMap = cv2.resize(probMap, (self.w, self.h)) # (432, 368)
keypoints = getKeypoints(probMap, self.threshold)
keypoints_with_id = []
for i in range(len(keypoints)):
keypoints_with_id.append(keypoints[i] + (keypoint_id,))
keypoints_list = np.vstack([keypoints_list, keypoints[i]])
keypoint_id += 1
detected_keypoints.append(keypoints_with_id)
self.results.put([detected_keypoints, outputs, keypoints_list])
self.inferred_request[dev] = 0
else:
heapq.heappush(self.heap_request, (cnt, dev))
except:
import traceback
traceback.print_exc()
def inferencer(device, model_xml, results, frameBuffer, number_of_ncs, camera_width, camera_height, vidfps, nPoints, w, h, new_w, new_h):
# Init infer threads
threads = []
for devid in range(number_of_ncs):
thworker = threading.Thread(target=async_infer, args=(NcsWorker(devid, device, model_xml, frameBuffer, results, camera_width, camera_height, number_of_ncs, vidfps, nPoints, w, h, new_w, new_h),))
thworker.start()
threads.append(thworker)
for th in threads:
th.join()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("-d", "--device", help="Specify the target device to infer on; CPU, GPU, MYRIAD is acceptable. (Default=CPU)", default="CPU", type=str)
parser.add_argument('-numncs','--numberofncs',dest='number_of_ncs',type=int,default=1,help='Number of NCS. (Default=1)')
parser.add_argument("-b", "--boost", help="Setting it to True will make it run faster instead of sacrificing accuracy. (Default=False)", default=False, type=bool)
args = parser.parse_args()
device = args.device
if "CPU" == device:
number_of_ncs = 1
if args.boost == False:
model_xml = "models/train/test/openvino/mobilenet_v2_1.4_224/FP32/frozen-model.xml"
else:
model_xml = "models/train/test/openvino/mobilenet_v2_0.5_224/FP32/frozen-model.xml"
elif "MYRIAD" == device:
number_of_ncs = args.number_of_ncs
if args.boost == False:
model_xml = "models/train/test/openvino/mobilenet_v2_1.4_224/FP16/frozen-model.xml"
else:
model_xml = "models/train/test/openvino/mobilenet_v2_0.5_224/FP16/frozen-model.xml"
elif "GPU" == device:
number_of_ncs = 1
if args.boost == False:
model_xml = "models/train/test/openvino/mobilenet_v2_1.4_224/FP16/frozen-model.xml"
else:
model_xml = "models/train/test/openvino/mobilenet_v2_0.5_224/FP16/frozen-model.xml"
else:
print("Specify the target device to infer on; CPU, GPU, MYRIAD is acceptable.")
sys.exit(0)
camera_width = 320
camera_height = 240
vidfps = 30
nPoints = 18
w = 432 # Network size (Width)
h = 368 # Network size (Height)
new_w = int(camera_width * min(w/camera_width, h/camera_height))
new_h = int(camera_height * min(w/camera_width, h/camera_height))
try:
mp.set_start_method('forkserver')
frameBuffer = mp.Queue(4)
results = mp.Queue()
# Start detection MultiStick
# Activation of inferencer
p = mp.Process(target=inferencer, args=(device, model_xml, results, frameBuffer, number_of_ncs, camera_width, camera_height, vidfps, nPoints, w, h, new_w, new_h), daemon=True)
p.start()
processes.append(p)
if device == "MYRIAD":
sleep(number_of_ncs * 7)
# Start streaming
p = mp.Process(target=camThread, args=(results, frameBuffer, camera_width, camera_height, vidfps, nPoints, w, h, new_w, new_h), daemon=True)
p.start()
processes.append(p)
while True:
sleep(1)
except:
import traceback
traceback.print_exc()
finally:
for p in range(len(processes)):
processes[p].terminate()
print("\n\nFinished\n\n")