Skip to content

Latest commit

 

History

History
308 lines (227 loc) · 9.24 KB

0005.最长回文子串.md

File metadata and controls

308 lines (227 loc) · 9.24 KB

欢迎大家参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!

5.最长回文子串

力扣题目链接

给你一个字符串 s,找到 s 中最长的回文子串。

示例 1:

  • 输入:s = "babad"
  • 输出:"bab"
  • 解释:"aba" 同样是符合题意的答案。

示例 2:

  • 输入:s = "cbbd"
  • 输出:"bb"

示例 3:

  • 输入:s = "a"
  • 输出:"a"

示例 4:

  • 输入:s = "ac"
  • 输出:"a"

思路

本题和647.回文子串 差不多是一样的,但647.回文子串更基本一点,建议可以先做647.回文子串

暴力解法

两层for循环,遍历区间起始位置和终止位置,然后判断这个区间是不是回文。

时间复杂度:O(n^3)

动态规划

动规五部曲:

  1. 确定dp数组(dp table)以及下标的含义

布尔类型的dp[i][j]:表示区间范围[i,j] (注意是左闭右闭)的子串是否是回文子串,如果是dp[i][j]为true,否则为false。

  1. 确定递推公式

在确定递推公式时,就要分析如下几种情况。

整体上是两种,就是s[i]与s[j]相等,s[i]与s[j]不相等这两种。

当s[i]与s[j]不相等,那没啥好说的了,dp[i][j]一定是false。

当s[i]与s[j]相等时,这就复杂一些了,有如下三种情况

  • 情况一:下标i 与 j相同,同一个字符例如a,当然是回文子串
  • 情况二:下标i 与 j相差为1,例如aa,也是文子串
  • 情况三:下标:i 与 j相差大于1的时候,例如cabac,此时s[i]与s[j]已经相同了,我们看i到j区间是不是回文子串就看aba是不是回文就可以了,那么aba的区间就是 i+1 与 j-1区间,这个区间是不是回文就看dp[i + 1][j - 1]是否为true。

以上三种情况分析完了,那么递归公式如下:

if (s[i] == s[j]) {
    if (j - i <= 1) { // 情况一 和 情况二
        dp[i][j] = true;
    } else if (dp[i + 1][j - 1]) { // 情况三
        dp[i][j] = true;
    }
}

注意这里我没有列出当s[i]与s[j]不相等的时候,因为在下面dp[i][j]初始化的时候,就初始为false。

在得到[i,j]区间是否是回文子串的时候,直接保存最长回文子串的左边界和右边界,代码如下:

if (s[i] == s[j]) {
    if (j - i <= 1) { // 情况一 和 情况二
        dp[i][j] = true;
    } else if (dp[i + 1][j - 1]) { // 情况三
        dp[i][j] = true;
    }
}
if (dp[i][j] && j - i + 1 > maxlenth) {
    maxlenth = j - i + 1;
    left = i;
    right = j;
}
  1. dp数组如何初始化

dp[i][j]可以初始化为true么? 当然不行,怎能刚开始就全都匹配上了。

所以dp[i][j]初始化为false。

  1. 确定遍历顺序

遍历顺序可有有点讲究了。

首先从递推公式中可以看出,情况三是根据dp[i + 1][j - 1]是否为true,在对dp[i][j]进行赋值true的。

dp[i + 1][j - 1] 在 dp[i][j]的左下角,如图:

647.回文子串

如果这矩阵是从上到下,从左到右遍历,那么会用到没有计算过的dp[i + 1][j - 1],也就是根据不确定是不是回文的区间[i+1,j-1],来判断了[i,j]是不是回文,那结果一定是不对的。

所以一定要从下到上,从左到右遍历,这样保证dp[i + 1][j - 1]都是经过计算的

有的代码实现是优先遍历列,然后遍历行,其实也是一个道理,都是为了保证dp[i + 1][j - 1]都是经过计算的。

代码如下:

for (int i = s.size() - 1; i >= 0; i--) { // 注意遍历顺序
    for (int j = i; j < s.size(); j++) {
        if (s[i] == s[j]) {
            if (j - i <= 1) { // 情况一 和 情况二
                dp[i][j] = true;
            } else if (dp[i + 1][j - 1]) { // 情况三
                dp[i][j] = true;
            }
        }
        if (dp[i][j] && j - i + 1 > maxlenth) {
            maxlenth = j - i + 1;
            left = i;
            right = j;
        }
    }

}
  1. 举例推导dp数组

举例,输入:"aaa",dp[i][j]状态如下:

647.回文子串1

注意因为dp[i][j]的定义,所以j一定是大于等于i的,那么在填充dp[i][j]的时候一定是只填充右上半部分

以上分析完毕,C++代码如下:

class Solution {
public:
    string longestPalindrome(string s) {
        vector<vector<int>> dp(s.size(), vector<int>(s.size(), 0));
        int maxlenth = 0;
        int left = 0;
        int right = 0;
        for (int i = s.size() - 1; i >= 0; i--) {
            for (int j = i; j < s.size(); j++) {
                if (s[i] == s[j]) {
                    if (j - i <= 1) { // 情况一 和 情况二
                        dp[i][j] = true;
                    } else if (dp[i + 1][j - 1]) { // 情况三
                        dp[i][j] = true;
                    }
                }
                if (dp[i][j] && j - i + 1 > maxlenth) {
                    maxlenth = j - i + 1;
                    left = i;
                    right = j;
                }
            }

        }
        return s.substr(left, right - left + 1);
    }
};

以上代码是为了凸显情况一二三,当然是可以简洁一下的,如下:

class Solution {
public:
    string longestPalindrome(string s) {
        vector<vector<int>> dp(s.size(), vector<int>(s.size(), 0));
        int maxlenth = 0;
        int left = 0;
        int right = 0;
        for (int i = s.size() - 1; i >= 0; i--) {
            for (int j = i; j < s.size(); j++) {
                if (s[i] == s[j] && (j - i <= 1 || dp[i + 1][j - 1])) {
                    dp[i][j] = true;
                }
                if (dp[i][j] && j - i + 1 > maxlenth) {
                    maxlenth = j - i + 1;
                    left = i;
                    right = j;
                }
            }
        }
        return s.substr(left, maxlenth);
    }
};
  • 时间复杂度:O(n^2)
  • 空间复杂度:O(n^2)

双指针

动态规划的空间复杂度是偏高的,我们再看一下双指针法。

首先确定回文串,就是找中心然后想两边扩散看是不是对称的就可以了。

在遍历中心点的时候,要注意中心点有两种情况

一个元素可以作为中心点,两个元素也可以作为中心点。

那么有人同学问了,三个元素还可以做中心点呢。其实三个元素就可以由一个元素左右添加元素得到,四个元素则可以由两个元素左右添加元素得到。

所以我们在计算的时候,要注意一个元素为中心点和两个元素为中心点的情况。

这两种情况可以放在一起计算,但分别计算思路更清晰,我倾向于分别计算,代码如下:

class Solution {
public:
    int left = 0;
    int right = 0;
    int maxLength = 0;
    string longestPalindrome(string s) {
        int result = 0;
        for (int i = 0; i < s.size(); i++) {
            extend(s, i, i, s.size()); // 以i为中心
            extend(s, i, i + 1, s.size()); // 以i和i+1为中心
        }
        return s.substr(left, maxLength);
    }
    void extend(const string& s, int i, int j, int n) {
        while (i >= 0 && j < n && s[i] == s[j]) {
            if (j - i + 1 > maxLength) {
                left = i;
                right = j;
                maxLength = j - i + 1;
            }
            i--;
            j++;
        }
    }
};
  • 时间复杂度:O(n^2)
  • 空间复杂度:O(1)

其他语言版本

Java

Python

class Solution:
    def longestPalindrome(self, s: str) -> str:
        dp = [[False] * len(s) for _ in range(len(s))]
        maxlenth = 0
        left = 0
        right = 0
        for i in range(len(s) - 1, -1, -1):
            for j in range(i, len(s)):
                if s[j] == s[i]:
                    if j - i <= 1 or dp[i + 1][j - 1]:
                        dp[i][j] = True
                if dp[i][j] and j - i + 1 > maxlenth:
                    maxlenth = j - i + 1
                    left = i
                    right = j
        return s[left:right + 1]

Go

JavaScript