欢迎大家参与本项目,贡献其他语言版本的代码,拥抱开源,让更多学习算法的小伙伴们收益!
给你一个字符串 s,找到 s 中最长的回文子串。
示例 1:
- 输入:s = "babad"
- 输出:"bab"
- 解释:"aba" 同样是符合题意的答案。
示例 2:
- 输入:s = "cbbd"
- 输出:"bb"
示例 3:
- 输入:s = "a"
- 输出:"a"
示例 4:
- 输入:s = "ac"
- 输出:"a"
本题和647.回文子串 差不多是一样的,但647.回文子串更基本一点,建议可以先做647.回文子串
两层for循环,遍历区间起始位置和终止位置,然后判断这个区间是不是回文。
时间复杂度:O(n^3)
动规五部曲:
- 确定dp数组(dp table)以及下标的含义
布尔类型的dp[i][j]:表示区间范围[i,j] (注意是左闭右闭)的子串是否是回文子串,如果是dp[i][j]为true,否则为false。
- 确定递推公式
在确定递推公式时,就要分析如下几种情况。
整体上是两种,就是s[i]与s[j]相等,s[i]与s[j]不相等这两种。
当s[i]与s[j]不相等,那没啥好说的了,dp[i][j]一定是false。
当s[i]与s[j]相等时,这就复杂一些了,有如下三种情况
- 情况一:下标i 与 j相同,同一个字符例如a,当然是回文子串
- 情况二:下标i 与 j相差为1,例如aa,也是文子串
- 情况三:下标:i 与 j相差大于1的时候,例如cabac,此时s[i]与s[j]已经相同了,我们看i到j区间是不是回文子串就看aba是不是回文就可以了,那么aba的区间就是 i+1 与 j-1区间,这个区间是不是回文就看dp[i + 1][j - 1]是否为true。
以上三种情况分析完了,那么递归公式如下:
if (s[i] == s[j]) {
if (j - i <= 1) { // 情况一 和 情况二
dp[i][j] = true;
} else if (dp[i + 1][j - 1]) { // 情况三
dp[i][j] = true;
}
}
注意这里我没有列出当s[i]与s[j]不相等的时候,因为在下面dp[i][j]初始化的时候,就初始为false。
在得到[i,j]区间是否是回文子串的时候,直接保存最长回文子串的左边界和右边界,代码如下:
if (s[i] == s[j]) {
if (j - i <= 1) { // 情况一 和 情况二
dp[i][j] = true;
} else if (dp[i + 1][j - 1]) { // 情况三
dp[i][j] = true;
}
}
if (dp[i][j] && j - i + 1 > maxlenth) {
maxlenth = j - i + 1;
left = i;
right = j;
}
- dp数组如何初始化
dp[i][j]可以初始化为true么? 当然不行,怎能刚开始就全都匹配上了。
所以dp[i][j]初始化为false。
- 确定遍历顺序
遍历顺序可有有点讲究了。
首先从递推公式中可以看出,情况三是根据dp[i + 1][j - 1]是否为true,在对dp[i][j]进行赋值true的。
dp[i + 1][j - 1] 在 dp[i][j]的左下角,如图:
如果这矩阵是从上到下,从左到右遍历,那么会用到没有计算过的dp[i + 1][j - 1],也就是根据不确定是不是回文的区间[i+1,j-1],来判断了[i,j]是不是回文,那结果一定是不对的。
所以一定要从下到上,从左到右遍历,这样保证dp[i + 1][j - 1]都是经过计算的。
有的代码实现是优先遍历列,然后遍历行,其实也是一个道理,都是为了保证dp[i + 1][j - 1]都是经过计算的。
代码如下:
for (int i = s.size() - 1; i >= 0; i--) { // 注意遍历顺序
for (int j = i; j < s.size(); j++) {
if (s[i] == s[j]) {
if (j - i <= 1) { // 情况一 和 情况二
dp[i][j] = true;
} else if (dp[i + 1][j - 1]) { // 情况三
dp[i][j] = true;
}
}
if (dp[i][j] && j - i + 1 > maxlenth) {
maxlenth = j - i + 1;
left = i;
right = j;
}
}
}
- 举例推导dp数组
举例,输入:"aaa",dp[i][j]状态如下:
注意因为dp[i][j]的定义,所以j一定是大于等于i的,那么在填充dp[i][j]的时候一定是只填充右上半部分。
以上分析完毕,C++代码如下:
class Solution {
public:
string longestPalindrome(string s) {
vector<vector<int>> dp(s.size(), vector<int>(s.size(), 0));
int maxlenth = 0;
int left = 0;
int right = 0;
for (int i = s.size() - 1; i >= 0; i--) {
for (int j = i; j < s.size(); j++) {
if (s[i] == s[j]) {
if (j - i <= 1) { // 情况一 和 情况二
dp[i][j] = true;
} else if (dp[i + 1][j - 1]) { // 情况三
dp[i][j] = true;
}
}
if (dp[i][j] && j - i + 1 > maxlenth) {
maxlenth = j - i + 1;
left = i;
right = j;
}
}
}
return s.substr(left, right - left + 1);
}
};
以上代码是为了凸显情况一二三,当然是可以简洁一下的,如下:
class Solution {
public:
string longestPalindrome(string s) {
vector<vector<int>> dp(s.size(), vector<int>(s.size(), 0));
int maxlenth = 0;
int left = 0;
int right = 0;
for (int i = s.size() - 1; i >= 0; i--) {
for (int j = i; j < s.size(); j++) {
if (s[i] == s[j] && (j - i <= 1 || dp[i + 1][j - 1])) {
dp[i][j] = true;
}
if (dp[i][j] && j - i + 1 > maxlenth) {
maxlenth = j - i + 1;
left = i;
right = j;
}
}
}
return s.substr(left, maxlenth);
}
};
- 时间复杂度:O(n^2)
- 空间复杂度:O(n^2)
动态规划的空间复杂度是偏高的,我们再看一下双指针法。
首先确定回文串,就是找中心然后想两边扩散看是不是对称的就可以了。
在遍历中心点的时候,要注意中心点有两种情况。
一个元素可以作为中心点,两个元素也可以作为中心点。
那么有人同学问了,三个元素还可以做中心点呢。其实三个元素就可以由一个元素左右添加元素得到,四个元素则可以由两个元素左右添加元素得到。
所以我们在计算的时候,要注意一个元素为中心点和两个元素为中心点的情况。
这两种情况可以放在一起计算,但分别计算思路更清晰,我倾向于分别计算,代码如下:
class Solution {
public:
int left = 0;
int right = 0;
int maxLength = 0;
string longestPalindrome(string s) {
int result = 0;
for (int i = 0; i < s.size(); i++) {
extend(s, i, i, s.size()); // 以i为中心
extend(s, i, i + 1, s.size()); // 以i和i+1为中心
}
return s.substr(left, maxLength);
}
void extend(const string& s, int i, int j, int n) {
while (i >= 0 && j < n && s[i] == s[j]) {
if (j - i + 1 > maxLength) {
left = i;
right = j;
maxLength = j - i + 1;
}
i--;
j++;
}
}
};
- 时间复杂度:O(n^2)
- 空间复杂度:O(1)
class Solution:
def longestPalindrome(self, s: str) -> str:
dp = [[False] * len(s) for _ in range(len(s))]
maxlenth = 0
left = 0
right = 0
for i in range(len(s) - 1, -1, -1):
for j in range(i, len(s)):
if s[j] == s[i]:
if j - i <= 1 or dp[i + 1][j - 1]:
dp[i][j] = True
if dp[i][j] and j - i + 1 > maxlenth:
maxlenth = j - i + 1
left = i
right = j
return s[left:right + 1]