-
Notifications
You must be signed in to change notification settings - Fork 313
/
Copy pathlink_predict.py
235 lines (201 loc) · 8.05 KB
/
link_predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import time
import math
import os
import numpy as np
from sklearn import metrics
import pgl
from pgl import data_loader
from pgl.utils import op
from pgl.utils.logger import log
import paddle.fluid as fluid
import paddle.fluid.layers as l
np.random.seed(123)
def load(name):
if name == 'BlogCatalog':
dataset = data_loader.BlogCatalogDataset()
elif name == "ArXiv":
dataset = data_loader.ArXivDataset()
else:
raise ValueError(name + " dataset doesn't exists")
return dataset
def binary_op(u_embed, v_embed, binary_op_type):
if binary_op_type == "Average":
edge_embed = (u_embed + v_embed) / 2
elif binary_op_type == "Hadamard":
edge_embed = u_embed * v_embed
elif binary_op_type == "Weighted-L1":
edge_embed = l.abs(u_embed - v_embed)
elif binary_op_type == "Weighted-L2":
edge_embed = (u_embed - v_embed) * (u_embed - v_embed)
else:
raise ValueError(binary_op_type + " binary_op_type doesn't exists")
return edge_embed
def link_predict_model(num_nodes,
hidden_size=16,
name='link_predict_task',
binary_op_type="Weighted-L2"):
pyreader = l.py_reader(
capacity=70,
shapes=[[-1, 1], [-1, 1], [-1, 1]],
dtypes=['int64', 'int64', 'int64'],
lod_levels=[0, 0, 0],
name=name + '_pyreader',
use_double_buffer=True)
u, v, label = l.read_file(pyreader)
u_embed = l.embedding(
input=u,
size=[num_nodes, hidden_size],
param_attr=fluid.ParamAttr(name='content'))
v_embed = l.embedding(
input=v,
size=[num_nodes, hidden_size],
param_attr=fluid.ParamAttr(name='content'))
u_embed.stop_gradient = True
v_embed.stop_gradient = True
edge_embed = binary_op(u_embed, v_embed, binary_op_type)
logit = l.fc(input=edge_embed, size=1)
loss = l.sigmoid_cross_entropy_with_logits(logit, l.cast(label, 'float32'))
loss = l.reduce_mean(loss)
prob = l.sigmoid(logit)
return pyreader, loss, prob, label
def link_predict_generator(pos_edges,
neg_edges,
batch_size=512,
epoch=2000,
shuffle=True):
all_edges = []
for (u, v) in pos_edges:
all_edges.append([u, v, 1])
for (u, v) in neg_edges:
all_edges.append([u, v, 0])
all_edges = np.array(all_edges, np.int64)
def batch_edges_generator(shuffle=shuffle):
perm = np.arange(len(all_edges), dtype=np.int64)
if shuffle:
np.random.shuffle(perm)
start = 0
while start < len(all_edges):
yield all_edges[perm[start:start + batch_size]]
start += batch_size
def wrapper():
for _ in range(epoch):
for batch_edges in batch_edges_generator():
yield batch_edges.T[0:1].T, batch_edges.T[
1:2].T, batch_edges.T[2:3].T
return wrapper
def main(args):
hidden_size = args.hidden_size
epoch = args.epoch
ckpt_path = args.ckpt_path
dataset = load(args.dataset)
num_edges = len(dataset.pos_edges) + len(dataset.neg_edges)
train_num_edges = int(len(dataset.pos_edges) * 0.5) + int(
len(dataset.neg_edges) * 0.5)
test_num_edges = num_edges - train_num_edges
train_steps = (train_num_edges // train_num_edges) * epoch
place = fluid.CUDAPlace(0) if args.use_cuda else fluid.CPUPlace()
train_prog = fluid.Program()
test_prog = fluid.Program()
startup_prog = fluid.Program()
with fluid.program_guard(train_prog, startup_prog):
with fluid.unique_name.guard():
train_pyreader, train_loss, train_probs, train_labels = link_predict_model(
dataset.graph.num_nodes, hidden_size=hidden_size, name='train')
lr = l.polynomial_decay(0.025, train_steps, 0.0001)
adam = fluid.optimizer.Adam(lr)
adam.minimize(train_loss)
with fluid.program_guard(test_prog, startup_prog):
with fluid.unique_name.guard():
test_pyreader, test_loss, test_probs, test_labels = link_predict_model(
dataset.graph.num_nodes, hidden_size=hidden_size, name='test')
test_prog = test_prog.clone(for_test=True)
train_pyreader.decorate_tensor_provider(
link_predict_generator(
dataset.pos_edges[:train_num_edges // 2],
dataset.neg_edges[:train_num_edges // 2],
batch_size=train_num_edges,
epoch=epoch))
test_pyreader.decorate_tensor_provider(
link_predict_generator(
dataset.pos_edges[train_num_edges // 2:],
dataset.neg_edges[train_num_edges // 2:],
batch_size=test_num_edges,
epoch=1))
exe = fluid.Executor(place)
exe.run(startup_prog)
train_pyreader.start()
def existed_params(var):
if not isinstance(var, fluid.framework.Parameter):
return False
return os.path.exists(os.path.join(ckpt_path, var.name))
fluid.io.load_vars(
exe, ckpt_path, main_program=train_prog, predicate=existed_params)
step = 0
prev_time = time.time()
while 1:
try:
train_loss_val, train_probs_val, train_labels_val = exe.run(
train_prog,
fetch_list=[train_loss, train_probs, train_labels],
return_numpy=True)
fpr, tpr, thresholds = metrics.roc_curve(train_labels_val,
train_probs_val)
train_auc = metrics.auc(fpr, tpr)
step += 1
log.info("Step %d " % step + "Train Loss: %f " % train_loss_val +
"Train AUC: %f " % train_auc)
except fluid.core.EOFException:
train_pyreader.reset()
break
test_pyreader.start()
test_probs_vals, test_labels_vals = [], []
while 1:
try:
test_loss_val, test_probs_val, test_labels_val = exe.run(
test_prog,
fetch_list=[test_loss, test_probs, test_labels],
return_numpy=True)
test_probs_vals.append(
test_probs_val), test_labels_vals.append(test_labels_val)
except fluid.core.EOFException:
test_pyreader.reset()
test_probs_array = np.concatenate(test_probs_vals)
test_labels_array = np.concatenate(test_labels_vals)
fpr, tpr, thresholds = metrics.roc_curve(test_labels_array,
test_probs_array)
test_auc = metrics.auc(fpr, tpr)
log.info("\t\tStep %d " % step + "Test Loss: %f " %
test_loss_val + "Test AUC: %f " % test_auc)
break
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='node2vec')
parser.add_argument(
"--dataset",
type=str,
default="ArXiv",
help="dataset (BlogCatalog, ArXiv)")
parser.add_argument("--use_cuda", action='store_true', help="use_cuda")
parser.add_argument("--hidden_size", type=int, default=128)
parser.add_argument("--epoch", type=int, default=400)
parser.add_argument("--batch_size", type=int, default=None)
parser.add_argument(
"--ckpt_path",
type=str,
default="./tmp/deepwalk_arxiv_e10/paddle_model")
args = parser.parse_args()
log.info(args)
main(args)