We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
windows部署报错:
python web_service.py --config=config.yml args config: {'rpc_port': 18091, 'http_port': 9998, 'worker_num': 1, 'build_dag_each_worker': False, 'dag': {'is_thread_op': True, 'retry': 3, 'use_profile': False, 'tracer': {'interval_s': -1}}, 'op': {'det': {'concurrency': 1, 'local_service_conf': {'client_type': 'local_predictor', 'model_config': './ppocr_det_v4_serving', 'devices': '', 'ir_optim': False}}, 'rec': {'concurrency': 1, 'timeout': 3000, 'retry': 1, 'local_service_conf': {'client_type': 'local_predictor', 'model_config': './ppocr_rec_v4_serving', 'devices': '', 'ir_optim': False}}}} [DAG] Succ init I0113 11:20:45.652944 10512 analysis_predictor.cc:1626] MKLDNN is enabled I0113 11:20:45.652944 10512 analysis_predictor.cc:1740] Ir optimization is turned off, no ir pass will be executed. e[1me[35m--- Running analysis [ir_graph_build_pass]e[0m I0113 11:20:45.652944 10512 executor.cc:187] Old Executor is Running. e[1me[35m--- Running analysis [ir_analysis_pass]e[0m e[1me[35m--- Running analysis [save_optimized_model_pass]e[0m e[1me[35m--- Running analysis [ir_params_sync_among_devices_pass]e[0m e[1me[35m--- Running analysis [adjust_cudnn_workspace_size_pass]e[0m e[1me[35m--- Running analysis [inference_op_replace_pass]e[0m e[1me[35m--- Running analysis [memory_optimize_pass]e[0m I0113 11:20:45.668565 10512 memory_optimize_pass.cc:118] The persistable params in main graph are : 10.2689MB I0113 11:20:45.684191 10512 memory_optimize_pass.cc:246] Cluster name : linear_170.tmp_1 size: 26500 I0113 11:20:45.684191 10512 memory_optimize_pass.cc:246] Cluster name : shape_5.tmp_0_slice_1 size: 4 I0113 11:20:45.684191 10512 memory_optimize_pass.cc:246] Cluster name : conv2d_198.tmp_1 size: 11520 I0113 11:20:45.684191 10512 memory_optimize_pass.cc:246] Cluster name : linear_170.tmp_0 size: 26500 I0113 11:20:45.684191 10512 memory_optimize_pass.cc:246] Cluster name : pool2d_3.tmp_0_clone_0 size: 1920 I0113 11:20:45.684191 10512 memory_optimize_pass.cc:246] Cluster name : batch_norm_5.tmp_0 size: 1920 I0113 11:20:45.684191 10512 memory_optimize_pass.cc:246] Cluster name : x size: 576 I0113 11:20:45.684191 10512 memory_optimize_pass.cc:246] Cluster name : transpose_44.tmp_0_slice_2 size: 480 I0113 11:20:45.684191 10512 memory_optimize_pass.cc:246] Cluster name : fill_constant_17.tmp_0 size: 4 I0113 11:20:45.684191 10512 memory_optimize_pass.cc:246] Cluster name : fill_constant_19.tmp_0 size: 4 I0113 11:20:45.684191 10512 memory_optimize_pass.cc:246] Cluster name : shape_3.tmp_0_slice_1 size: 4 I0113 11:20:45.684191 10512 memory_optimize_pass.cc:246] Cluster name : reshape2_27.tmp_1 size: 0 e[1me[35m--- Running analysis [ir_graph_to_program_pass]e[0m I0113 11:20:45.736836 10512 analysis_predictor.cc:1838] ======= optimize end ======= I0113 11:20:45.736836 10512 naive_executor.cc:200] --- skip [feed], feed -> x I0113 11:20:45.736836 10512 naive_executor.cc:200] --- skip [softmax_11.tmp_0], fetch -> fetch [OP Object] init success I0113 11:20:45.762605 10512 analysis_predictor.cc:1626] MKLDNN is enabled I0113 11:20:45.762605 10512 analysis_predictor.cc:1740] Ir optimization is turned off, no ir pass will be executed. e[1me[35m--- Running analysis [ir_graph_build_pass]e[0m e[1me[35m--- Running analysis [ir_analysis_pass]e[0m e[1me[35m--- Running analysis [save_optimized_model_pass]e[0m e[1me[35m--- Running analysis [ir_params_sync_among_devices_pass]e[0m e[1me[35m--- Running analysis [adjust_cudnn_workspace_size_pass]e[0m e[1me[35m--- Running analysis [inference_op_replace_pass]e[0m e[1me[35m--- Running analysis [memory_optimize_pass]e[0m I0113 11:20:45.782716 10512 memory_optimize_pass.cc:118] The persistable params in main graph are : 4.47025MB I0113 11:20:45.782716 10512 memory_optimize_pass.cc:246] Cluster name : tmp_85 size: 1536 I0113 11:20:45.782716 10512 memory_optimize_pass.cc:246] Cluster name : tmp_21 size: 192 I0113 11:20:45.782716 10512 memory_optimize_pass.cc:246] Cluster name : tmp_94 size: 1536 I0113 11:20:45.782716 10512 memory_optimize_pass.cc:246] Cluster name : tmp_118 size: 96 I0113 11:20:45.782716 10512 memory_optimize_pass.cc:246] Cluster name : relu_1.tmp_0 size: 384 I0113 11:20:45.782716 10512 memory_optimize_pass.cc:246] Cluster name : hardswish_79.tmp_0 size: 1536 I0113 11:20:45.782716 10512 memory_optimize_pass.cc:246] Cluster name : tmp_35 size: 384 I0113 11:20:45.782716 10512 memory_optimize_pass.cc:246] Cluster name : tmp_73 size: 768 I0113 11:20:45.782716 10512 memory_optimize_pass.cc:246] Cluster name : x size: 12 e[1me[35m--- Running analysis [ir_graph_to_program_pass]e[0m I0113 11:20:45.830435 10512 analysis_predictor.cc:1838] ======= optimize end ======= I0113 11:20:45.830435 10512 naive_executor.cc:200] --- skip [feed], feed -> x I0113 11:20:45.830435 10512 naive_executor.cc:200] --- skip [sigmoid_0.tmp_0], fetch -> fetch [OP Object] init success [PipelineServicer] succ init Error running service: cannot pickle '_thread.lock' object
当前环境为:windows的anaconda环境下使用pip命令 python 3.8
Name: paddlepaddle Version: 2.6.2 Name: paddleocr Version: 2.9.1
使用线程,config.yml如下: #rpc端口, rpc_port和http_port不允许同时为空。当rpc_port为空且http_port不为空时,会自动将rpc_port设置为http_port+1 rpc_port: 18091
#http端口, rpc_port和http_port不允许同时为空。当rpc_port可用且http_port为空时,不自动生成http_port
http_port: 9998 #worker_num, 最大并发数。当build_dag_each_worker=True时, 框架会创建worker_num个进程,每个进程内构建grpcSever和DAG ##当build_dag_each_worker=False时,框架会设置主线程grpc线程池的max_workers=worker_num #原来为:worker_num: 10 worker_num: 1
#build_dag_each_worker, False,框架在进程内创建一条DAG;True,框架会每个进程内创建多个独立的DAG #原来为:build_dag_each_worker: False build_dag_each_worker: False
dag: #op资源类型, True, 为线程模型;False,为进程模型 #原来为:is_thread_op: False is_thread_op: False
#重试次数 #原来为:retry: 10 retry: 3 #使用性能分析, True,生成Timeline性能数据,对性能有一定影响;False为不使用 #原来为:use_profile: True use_profile: False tracer: #原来为:interval_s: 10 interval_s: -1
op: det: #并发数,is_thread_op=True时,为线程并发;否则为进程并发 #原来为:concurrency: 8 concurrency: 1
#当op配置没有server_endpoints时,从local_service_conf读取本地服务配置 local_service_conf: #client类型,包括brpc, grpc和local_predictor.local_predictor不启动Serving服务,进程内预测 client_type: local_predictor #det模型路径 #model_config: ./ppocr_det_v3_serving model_config: ./ppocr_det_v4_serving #Fetch结果列表,以client_config中fetch_var的alias_name为准,不设置默认取全部输出变量 #fetch_list: ["sigmoid_0.tmp_0"] #计算硬件ID,当devices为""或不写时为CPU预测;当devices为"0", "0,1,2"时为GPU预测,表示使用的GPU卡 #原来为:devices: "0" devices: "" #原来为:ir_optim: True ir_optim: False rec: #并发数,is_thread_op=True时,为线程并发;否则为进程并发 #原来为:concurrency: 4 concurrency: 1 #超时时间, 单位ms #原来为:timeout: -1 timeout: 3000 #Serving交互重试次数,默认不重试 retry: 1 #当op配置没有server_endpoints时,从local_service_conf读取本地服务配置 local_service_conf: #client类型,包括brpc, grpc和local_predictor。local_predictor不启动Serving服务,进程内预测 client_type: local_predictor #rec模型路径 #model_config: ./ppocr_rec_v3_serving model_config: ./ppocr_rec_v4_serving #Fetch结果列表,以client_config中fetch_var的alias_name为准, 不设置默认取全部输出变量 #fetch_list: #计算硬件ID,当devices为""或不写时为CPU预测;当devices为"0", "0,1,2"时为GPU预测,表示使用的GPU卡 #原来为:devices: "0" devices: "" #原来为:ir_optim: True ir_optim: False
部署命令运行后报错
The text was updated successfully, but these errors were encountered:
Message that will be displayed on users' first issue
Sorry, something went wrong.
juncaipeng
No branches or pull requests
windows部署报错:
当前环境为:windows的anaconda环境下使用pip命令
python 3.8
Name: paddlepaddle
Version: 2.6.2
Name: paddleocr
Version: 2.9.1
使用线程,config.yml如下:
#rpc端口, rpc_port和http_port不允许同时为空。当rpc_port为空且http_port不为空时,会自动将rpc_port设置为http_port+1
rpc_port: 18091
#http端口, rpc_port和http_port不允许同时为空。当rpc_port可用且http_port为空时,不自动生成http_port
原来没有注释掉:http_port: 9998
http_port: 9998
#worker_num, 最大并发数。当build_dag_each_worker=True时, 框架会创建worker_num个进程,每个进程内构建grpcSever和DAG
##当build_dag_each_worker=False时,框架会设置主线程grpc线程池的max_workers=worker_num
#原来为:worker_num: 10
worker_num: 1
#build_dag_each_worker, False,框架在进程内创建一条DAG;True,框架会每个进程内创建多个独立的DAG
#原来为:build_dag_each_worker: False
build_dag_each_worker: False
dag:
#op资源类型, True, 为线程模型;False,为进程模型
#原来为:is_thread_op: False
is_thread_op: False
op:
det:
#并发数,is_thread_op=True时,为线程并发;否则为进程并发
#原来为:concurrency: 8
concurrency: 1
部署命令运行后报错
The text was updated successfully, but these errors were encountered: