-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoptimization_test_functions.py
78 lines (61 loc) · 2.04 KB
/
optimization_test_functions.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# -*- coding: utf-8 -*-
"""
Created on Thu Nov 19 16:25:17 2020
@author: qtckp
"""
import sys
sys.path.append('..')
import numpy as np
from geneticalgorithm2 import GeneticAlgorithm2 as ga
from OptimizationTestFunctions import Sphere, Ackley, AckleyTest, Rosenbrock, Fletcher, Griewank, Penalty2, Quartic, Rastrigin, SchwefelDouble, SchwefelMax, SchwefelAbs, SchwefelSin, Stairs, Abs, Michalewicz, Scheffer, Eggholder, Weierstrass
dim = 2
functions = [
Sphere(dim, degree = 2),
Ackley(dim),
AckleyTest(dim),
Rosenbrock(dim),
Fletcher(dim, seed = 1488),
Griewank(dim),
Penalty2(dim),
Quartic(dim),
Rastrigin(dim),
SchwefelDouble(dim),
SchwefelMax(dim),
SchwefelAbs(dim),
SchwefelSin(dim),
Stairs(dim),
Abs(dim),
Michalewicz(),
Scheffer(dim),
Eggholder(dim),
Weierstrass(dim)
]
for f in functions:
xmin, xmax, ymin, ymax = f.bounds
varbound = np.array([[xmin, xmax], [ymin, ymax]])
model = ga(function=f,
dimension = dim,
variable_type='real',
variable_boundaries=varbound,
algorithm_parameters = {
'max_num_iteration': 500,
'population_size': 100,
'mutation_probability': 0.1,
'elit_ratio': 0.01,
'crossover_probability': 0.5,
'parents_portion': 0.3,
'crossover_type':'uniform',
'mutation_type': 'uniform_by_center',
'selection_type': 'roulette',
'max_iteration_without_improv':100
}
)
model.run(no_plot = True,
stop_when_reached = (f.f_best + 1e-5/(xmax - xmin)) if f.f_best is not None else None
)
title = f"Optimization process for {type(f).__name__}"
model.plot_results(
title = title,
save_as = f"./output/opt_test_funcs/{title}.png",
main_color = 'green'
)